We consider how breakdown of the quasistatic approximation for attractors can lead to rate-induced tipping, where a qualitative change in tracking/tipping behaviour of trajectories can be characterised in terms of a critical rate. Associated with rate-induced tipping (where tracking of a branch of quasistatic attractors breaks down), we find a new phenomenon for attractors that are not simply equilibria: partial tipping of the pullback attractor where certain phases of the periodic attractor tip and others track the quasistatic attractor. For a specific model system with a parameter shift between two asymptotically autonomous systems with periodic attractors, we characterise thresholds of rate-induced tipping to partial and total tipping. We show these thresholds can be found in terms of certain periodic-to-periodic and periodic-to-equilibrium connections that we determine using Lin's method for an augmented system.

1.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
, “
Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system
,”
Philos. Trans. R. Soc. A
370
,
1166
1184
(
2012
).
2.
P.
Ashwin
,
C.
Perryman
, and
S.
Wieczorek
, “
Parameter shifts for nonautonomous systems in low dimension: Bifurcation- and Rate-induced tipping
,”
Nonlinearity
30
,
2185
2210
(
2017
);
P.
Ashwin
,
C.
Perryman
, and
S.
Wieczorek
, e-print arXiv:1506.07734.
3.
T. M.
Lenton
, “
Early warning of climate tipping points
,”
Nat. Clim. Change
1
,
201
209
(
2011
).
4.
H. J.
Schellnhuber
, “
Tipping elements in the Earth system
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
20561
20563
(
2009
).
5.
P. D.
Ditlevsen
and
S. J.
Johnsen
, “
Tipping points: Early warning and wishful thinking
,”
Geophys. Res. Lett.
37
,
2
5
, (
2010
).
6.
M.
Scheffer
,
E. H.
Van Nes
,
M.
Holmgren
, and
T.
Hughes
, “
Pulse-driven loss of top-down control: The critical-rate hypothesis
,”
Ecosystems
11
,
226
237
(
2008
).
7.
M.
Scheffer
,
J.
Bascompte
,
W. A.
Brock
,
V.
Brovkin
,
S. R.
Carpenter
,
V.
Dakos
,
H.
Held
,
E. H.
van Nes
,
M.
Rietkerk
, and
G.
Sugihara
, “
Early-warning signals for critical transitions
,”
Nature
461
,
53
59
(
2009
).
8.
R. M.
May
,
S. A.
Levin
, and
G.
Sugihara
, “
Complex systems: Ecology for bankers
,”
Nature
451
,
893
895
(
2008
).
9.
V.
Yukalov
,
D.
Sornette
, and
E.
Yukalova
, “
Nonlinear dynamical model of regime switching between conventions and business cycles
,”
J. Econ. Behav. Organ.
70
,
206
230
(
2009
).
10.
N.
Nene
and
A.
Zaikin
, “
Gene regulatory network attractor selection and cell fate decision: Insights into cancer multi-targeting
,” in
Proceedings of Biosignal
(
2010
), pp.
14
16
.
11.
S.
Wieczorek
,
P.
Ashwin
,
C. M.
Luke
, and
P. M.
Cox
, “
Excitability in ramped systems: The compost-bomb instability
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
467
,
1243
1269
(
2011
).
12.
C.
Kuehn
, “
A mathematical framework for critical transitions: Bifurcations, fastslow systems and stochastic dynamics
,”
Physica D
240
,
1020
1035
(
2011
).
13.
C.
Perryman
and
S.
Wieczorek
, “
Adapting to a changing environment: Non-obvious thresholds in multi-scale systems Subject Areas: Author for correspondence
,”
Proc. R. Soc. A
470
,
20140226
(
2016
).
14.
A.
Hoyer-Leitzel
,
A.
Nadeau
,
A.
Roberts
, and
A.
Steyer
, “
Connections between rate-induced tipping and nonautonomous stability theory
,” e-print arXiv:1702.02955.
15.
J.
Li
,
F. X. F.
Ye
,
H.
Qian
, and
S.
Huang
, “
Time dependent saddle node bifurcation: Breaking time and the point of no return in a non-autonomous model of critical transitions
,” e-print arXiv:1611.09542.
16.
P.
Ritchie
and
J.
Sieber
, “
Early-warning indicators for rate-induced tipping
,”
Chaos
26
,
093116
(
2016
).
17.
P.
Ritchie
and
J.
Sieber
, “
Probability of noise-and rate-induced tipping
,”
Phys. Rev. E
95
,
1
13
(
2017
).
18.
C. F.
Clements
and
A.
Ozgul
, “
Rate of forcing and the forecastability of critical transitions
,”
Ecol. Evol.
6
,
7787
7793
(
2016
).
19.
P. K.
Kloeden
and
M.
Rasmussen
,
Nonautonomous Dynamical Systems
, AMS Mathematical Surveys and Monographs (
American Mathematical Society
,
2011
), p.
264
.
20.
P.
Hartman
and
R.
Eugene
,
Ordinary Differential Equations
(
Springer
,
London
,
2014
).
21.
J.-P.
Aubin
and
H.
Frankowska
,
Set-Valued Analysis
(
Birkhäuser
,
Boston
,
1990
).
22.
M.
Rasmussen
, “
Bifurcations of asymptotically autonomous differential equations
,”
Set-Valued Anal.
16
,
821
849
(
2008
).
23.
M.
Rasmussen
,
Attractivity and Bifurcation for Nonautonomous Dynamical Systems
(
Springer
,
Berlin
,
2007
), Vol.
1907
.
24.
C. G.
Perryman
, “
How fast is too fast? Rate-induced bifurcations in multiple time-scale systems
,” Ph.D. thesis (
University of Exeter
,
2015
).
25.
B.
Aulbach
,
M.
Rasmussen
, and
S.
Siegmund
, “
Invariant manifolds as pullback attractors of nonautonomous differential equations
,”
Discrete Contin. Dyn. Syst.
15
,
579
596
(
2006
).
26.
A. J.
Homburg
and
B.
Sandstede
, “
Homoclinic and heteroclinic bifurcations in vector fields
,” in
Handbook of Dynamical Systems
(
Elsevier
,
2010
), Vol.
3
, pp.
379
524
.
27.
J.
Knobloch
and
T.
Rieß
, “
Lin's method for heteroclinic chains involving periodic orbits
,”
Nonlinearity
23
,
23
54
(
2010
).
28.
B.
Krauskopf
and
T.
Rieß
, “
A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits
,”
Nonlinearity
21
,
1655
1690
(
2008
).
29.
W.
Zhang
,
B.
Krauskopf
, and
V.
Kirk
, “
How to find a codimension-one heteroclinic cycle between two periodic orbits
,”
Discrete Contin. Dyn. Syst.
32
,
2825
2851
(
2012
).
You do not currently have access to this content.