The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.

1.
E.
Allen
, Modeling with Itô Stochastic Differential Equations (
Springer
,
2007
).
2.
E. J.
Allen
,
L. S.
Allen
,
A.
Arciniega
, and
P. E.
Greenwood
, “
Construction of equivalent stochastic differential equation models
,”
Stochastic Anal. Appl.
26
(
2
),
274
297
(
2008
).
3.
L.
Allen
,
An Introduction to Stochastic Processes with Applications to Biology
(
Chapman and Hall/CRC
,
2010
).
4.
C.
Asaro
and
L. A.
Chamberlin
, Outbreak History (19532014) of Spring Defoliators Impacting Oak-Dominated Forests in Virginia, with Emphasis on Gypsy Moth (Lymantria Dispar L.) and Fall Cankerworm (Alsophila Pometaria Harris) (
American Entomologist
,
2015
), pp.
174
-
185
.
5.
E.
Benoît
, “
Canards et enlacements
,”
Publ. Math. IHES
72
,
63
91
(
1990
).
6.
R.
Benzi
,
A.
Sutera
, and
A.
Vulpiani
, “
The mechanism of stochastic resonance
,”
J. Phys. A
14
(
11
),
453
457
(
1981
).
7.
N.
Berglund
and
B.
Gentz
,
Noise-Induced Phenomena in Slow-Fast Dynamical Systems
(
Springer
,
2006
).
8.
N.
Berglund
,
B.
Gentz
, and
C.
Kuehn
, “
Hunting French ducks in a noisy environment
,”
J. Differ. Eqs.
252
,
4786
4841
(
2012
).
9.
N.
Berglund
,
B.
Gentz
, and
C.
Kuehn
, “
From random Poincaré maps to stochastic mixed-mode-oscillation patterns
,”
J. Dyn. Differ. Eq.
27
(
1
),
83
136
(
2015
).
10.
N.
Berglund
and
D.
Landon
, “
Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model
,”
Nonlinearity
25
,
2303
2335
(
2012
).
11.
P.
Borowski
,
R.
Kuske
,
J. L.
Cabrera
, and
Y.
Li
, “
Characterizing noisy mixed mode oscillations in neuronal models
,”
Chaos
20
,
043117
(
2010
).
12.
B.
Braaksma
, “
Singular Hopf bifurcation in systems with fast and slow variables
,”
J. Nonlinear Sci.
8
(
5
),
457
490
(
1998
).
13.
C. A.
Braumann
, “
Harvesting in a random environment: Ito or Stratonovich calculus?
,”
J. Theor. Biol.
244
(
3
),
424
432
(
2007
).
14.
B. M.
Brøns
,
M.
Krupa
, and
M.
Wechselberger
, “
Mixed mode oscillations due to the generalized canard phenomenon
,”
Fields Inst. Commun.
49
,
39
63
(
2006
).
15.
F.
Campillo
and
C.
Lobry
, “
Effect of population size in a predator-prey model
,”
Eco. Modell.
246
,
1
10
(
2012
).
16.
P.
Chesson
, “
Predator-prey theory and variability
,”
Annu. Rev. Eco. Syst.
9
,
323
347
(
1978
).
17.
B.
Deng
, “
Food chain chaos due to junction-fold point
,”
Chaos
11
,
514
525
(
2001
).
18.
M.
Desroches
,
J.
Guckenheimer
,
B.
Krauskopf
,
C.
Kuehn
,
H. M.
Osinga
, and
M.
Wechselberger
, “
Mixed-mode oscillations with multiple time-scales
,”
SIAM Rev.
54
,
211
288
(
2012
).
19.
J.
Esper
,
U.
Bun¨tgen
,
D. C.
Frank
,
D.
Nievergelt
, and
A.
Liebhold
, “
1200 years of regular outbreaks in alpine insects
,”
Proc. R. Soc. B
274
,
671
679
(
2007
).
20.
N.
Fenichel
, “
Geometric singular perturbation theory for ordinary differential equations
,”
J. Differ. Eqs.
31
,
53
98
(
1979
).
21.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
,
223
287
(
1998
).
22.
C.
Gardiner
,
Stochastic Methods
, 4th ed. (
Springer
,
Berlin, Heidelberg, Germany
,
2009
).
23.
J.
Guckenheimer
, “
Singular Hopf bifurcation in systems with two slow variables
,”
SIAM J. Appl. Dyn. Syst.
7
(
4
),
1355
1377
(
2008
).
24.
G.
Hek
, “
Geometric singular perturbation theory in biological practice
,”
J. Math. Biol.
60
,
347
386
(
2010
).
25.
D. J.
Higham
, “
An algorithmic introduction to numerical simulation of stochastic differential equations
,”
SIAM Rev.
43
(
3
),
525
546
(
2001
).
26.
P.
Hitczenko
and
G. S.
Medvedev
, “
The Poincare map of randomly perturbed periodic motion
,”
J. Nonlinear Sci.
23
(
5
),
835
861
(
2013
).
27.
E.
Korpimäki
,
P. R.
Brown
,
J.
Jacob
, and
R. P.
Pech
, “
The puzzles of population cycles and outbreaks of small mammals solved?
,”
BioScience
54
,
1071
1079
(
2004
).
28.
M.
Krupa
and
P.
Szmolyan
, “
Extending slow manifolds near transcritical and pitchfork singularities
,”
Nonlinearity
14
,
1473
1491
(
2001
).
29.
M.
Krupa
and
M.
Wechselberger
, “
Local analysis near a folded saddle-node singularity
,”
J. Differ. Eqs.
248
(
12
),
2841
2888
(
2010
).
30.
C.
Kuehn
, “
On decomposing mixed-mode oscillations and their return maps
,”
Chaos
21
,
033107
(
2011
).
31.
C.
Kuehn
, “
Time-scale and noise optimality in self-organized critical adaptive networks
,”
Phys. Rev. E
85
(
2
),
026103
(
2012
).
32.
C.
Kuehn
,
Multiple Time Scale Dynamics
(
Springer
,
2015
),
814
pp.
33.
C.
Kuehn
and
P.
Szmolyan
, “
Multiscale geometry of the Olsen model and non-classical relaxation oscillations
,”
J. Nonlinear Sci.
25
(
3
),
583
629
(
2015
).
34.
R.
Kuske
,
L. F.
Gordillo
, and
P.
Greenwood
, “
Sustained oscillations via coherence resonance in SIR
,”
J. Theor. Biol.
245
,
459
469
(
2007
).
35.
B.
Lindner
and
L.
Schimansky-Geier
, “
Coherence and stochastic resonance in a two-state system
,”
Phys. Rev. E
61
(
6
),
6103
6110
(
2000
).
36.
G.
Meurant
,
Insect Outbreaks
(
Academic Press
,
1987
).
37.
C. B.
Muratov
and
E.
Vanden-Eijnden
, “
Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle
,”
Chaos
18
,
015111
(
2008
).
38.
C.
Nicolis
and
G.
Nicolis
, “
Stochastic aspects of climatic transitions—additive fluctuations
,”
Tellus
33
(
3
),
225
234
(
1981
).
39.
S.
Rinaldi
and
S.
Muratori
, “
Slow-fast limit cycles in predator-prey models
,”
Ecol. Modell.
61
,
287
308
(
1992
).
40.
H. G.
Rotstein
,
T.
Oppermann
,
J. A.
White
, and
N.
Kopell
, “
The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells
,”
J. Comput. Neurosci.
21
,
271
292
(
2006
).
41.
H. G.
Rotstein
,
M.
Wechselberger
, and
N.
Kopell
, “
Canard induced mixed-mode oscillations in a medial entorhinal 21 cortex layer II stellate cell model
,”
SIAM J. Appl. Dyn. Syst.
7
(
4
),
1582
1611
(
2008
).
42.
S.
Sadhu
, “
Mixed mode oscillations and chaotic dynamics in a two-trophic ecological model with Holling type ii functional response
,”
Bull. Cal. Math. Soc.
106
(
6
),
429
442
(
2015
).
43.
S.
Sadhu
, “
Canards and mixed-mode oscillations in a singularly perturbed two predators-one prey model
,”
Proc. Dyn. Syst. Appl.
7
,
211
219
(
2016
).
44.
S.
Sadhu
, “
Stochasticity induced mixed-mode oscillations and distribution of recurrent outbreaks in an ecosystem
,”
Chaos
27
,
033108
(
2017
).
45.
S.
Sadhu
and
S.
Chakraborty Thakur
, “
Uncertainty and predictability in population dynamics of a two-trophic ecological model: Mixed-mode oscillations, bistability and sensitivity to parameters
,”
Ecol. Complexity
32
,
196
208
(
2017
).
46.
P.
Szmolyan
and
M.
Wechselberger
, “
Canards in 3
,”
J. Differ. Eqs.
177
,
419
453
(
2001
).
47.
M.
Wechselberger
, “
Singularly perturbed folds and canards in 3
,” Ph.D. thesis (
Vienna University of Technology
, Vienna, Austria,
1998
).
48.
M.
Wechselberger
, “
Existence and bifurcation of canards in 3 in the case of a folded node
,”
SIAM J. Appl. Dyn. Syst.
4
(
1
),
101
139
(
2005
).
You do not currently have access to this content.