We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.

1.
R. L.
Devaney
,
A First Course in Chaotic Dynamical Systems: Theory and Experiment
(
Westview Press
,
1992
).
2.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
3.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer
,
2003
).
4.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Avalon Publishing
,
2014
).
5.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Physica D
7
,
181
(
1983
).
6.
L.
Lui
,
Nonlinear Physics for Beginners: Fractals, Chaos, Solitons, Pattern Formation, Cellular Automata and Complex Systems
(
World Scientific Publishing Company
,
1998
).
7.
R. J.
Field
and
L.
Gyorgyi
,
Chaos in Chemistry and Biochemistry
(
World Scientific Publishing Company
,
1993
).
8.
R. F.
Costantino
,
R. A.
Desharnais
,
J. M.
Cushing
, and
B.
Dennis
,
Science
275
,
389
(
1997
).
9.
A.
Babloyantz
,
J. M.
Salazar
, and
C.
Nicolis
,
Phys. Lett. A
111
,
152
(
1985
).
10.
A.
Medio
and
A.
Gallo
,
Chaotic Dynamics: Theory and Applications to Economics
(
Cambridge University Press
,
1995
).
11.
S. L. T.
de Souza
,
A. M.
Batista
,
I. L.
Caldas
,
R. L.
Viana
, and
T.
Kapitaniak
,
Chaos, Solitons Fractals
32
,
758
(
2007
).
12.
A.
Silchenko
,
T.
Kapitaniak
, and
V.
Anishchenko
,
Phys. Rev. E
59
,
1593
(
1999
).
13.
T.
Kapitaniak
,
J. Sound Vib.
102
,
440
(
1985
).
14.
V. N.
Chizhevsky
,
Phys. Rev. E
64
,
036223
(
2001
).
15.
R. S.
MacKay
and
J.-A.
Sepulchre
,
Physica D
82
,
243
(
1995
).
16.
M. D.
Shrimali
,
A.
Prasad
,
R.
Ramaswamy
, and
U.
Feudel
,
Int. J. Bifurcation Chaos
18
,
1675
(
2008
).
17.
U.
Feudel
and
C.
Grebogi
,
Chaos
7
,
597
(
1997
).
18.
A. N.
Pisarchik
and
U.
Feudel
,
Phys. Rep.
540
,
167
(
2014
).
19.
C. R.
Hens
,
R.
Banerjee
,
U.
Feudel
, and
S. K.
Dana
,
Phys. Rev. E
85
,
035202
(
2012
).
20.
P.
Brzeski
,
J.
Wojewoda
,
T.
Kapitaniak
,
J.
Kurths
, and
P.
Perlikowski
,
Sci. Rep.
7
,
6121
(
2017
).
21.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
,
Phys. Lett. A
375
,
2230
(
2011
).
22.
Q.
Li
,
H.
Zeng
, and
X.-S.
Yang
,
Nonlinear Dyn.
77
,
255
(
2014
).
23.
C.
Li
and
J. C.
Sprott
,
Int. J. Bifurcation Chaos
24
,
1450034
(
2014
).
24.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
T. N.
Mokaev
,
Eur. Phys. J.: Spec. Top.
224
,
1421
(
2015
).
25.
V.-T.
Pham
,
S.
Vaidyanathan
,
C. K.
Volos
, and
S.
Jafari
,
Eur. Phys. J.: Spec. Top.
224
,
1507
(
2015
).
26.
U.
Chaudhuri
and
A.
Prasad
,
Phys. Lett. A
378
,
713
(
2014
).
27.
S.
Jafari
,
J. C.
Sprott
, and
F.
Nazarimehr
,
Eur. Phys. J.: Spec. Top.
224
,
1469
(
2015
).
28.
D.
Dudkowski
,
S.
Jafari
,
T.
Kapitaniak
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
A.
Prasad
,
Phys. Rep.
637
,
1
(
2016
).
29.
G. A.
Leonov
and
N. V.
Kuznetsov
,
Int. J. Bifurcation Chaos
23
,
1330002
(
2013
).
30.
M.
Zakrzhevsky
,
I.
Schukin
, and
V.
Yevstignejev
,
Transp. Eng.: Mech.
24
,
79
(
2007
).
31.
M.
Zakrzhevsky
,
A.
Klokov
,
V.
Yevstignejev
,
E.
Shilvan
, and
A.
Kragis
, “
Nonlinear dynamics and rare attractors in driven damped pendulum systems
,” in
7th International DAAAM Baltic Conference Industrial Engineering
, Tallinn, Estonia (
2010
).
32.
V.
Yevstignejev
,
A.
Klokov
,
R.
Smirnova
, and
I.
Schukin
, “
Rare attractors in typical nonlinear discrete dynamical models
,” in
4th IEEE International Conference on Nonlinear Science and Complexity
, Budapest, Hungary (
2012
).
33.
A.
Chudzik
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
,
Int. J. Bifurcation Chaos
21
,
1907
(
2011
).
34.
D.
Dudkowski
,
A.
Prasad
, and
T.
Kapitaniak
,
Phys. Lett. A
379
,
2591
(
2015
).
35.
A.
Prasad
,
Int. J. Bifurcation Chaos
25
,
1530005
(
2015
).
36.
A.
Prasad
,
Int. J. Nonlinear Sci.
21
,
60
(
2016
).
37.
D.
Dudkowski
,
A.
Prasad
, and
T.
Kapitaniak
,
Int. J. Bifurcation Chaos
27
,
1750063
(
2017
).
38.
D.
Dudkowski
,
A.
Prasad
, and
T.
Kapitaniak
,
Chaos
26
,
103103
(
2016
).
39.
S.
Jafari
,
F.
Nazarimehr
,
J. C.
Sprott
, and
S. M. R. H.
Golpayegani
,
Int. J. Bifurcation Chaos
25
,
1550182
(
2015
).
40.
F.
Nazarimehr
,
B.
Saedi
,
S.
Jafari
, and
J. C.
Sprott
,
Int. J. Bifurcation Chaos
27
,
1750037
(
2017
).
41.
C.
Letellier
and
J.-M.
Malasoma
,
Chaos
26
,
063115
(
2016
).
42.
X.
Wang
and
G.
Chen
,
Nonlinear Dyn.
71
,
429
(
2013
).
43.
Z.
Wei
,
Phys. Lett. A
376
,
102
(
2011
).
44.
O. E.
Rossler
,
Phys. Lett. A
57
,
397
(
1976
).
45.
O. E.
Rossler
,
Phys. Lett. A
71
,
155
(
1979
).
46.
I.
Kovacic
and
M. J.
Brennan
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
(
Wiley
,
2011
).
47.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
,
Nat. Phys.
9
,
89
(
2013
).
48.
P.
Schultz
,
J.
Heitzig
, and
J.
Kurths
,
New J. Phys.
16
,
125001
(
2014
).
49.
P.
Brzeski
,
M.
Lazarek
,
T.
Kapitaniak
,
J.
Kurths
, and
P.
Perlikowski
,
Meccanica
51
,
2713
(
2016
).
50.
L.
Ying
,
D.
Huang
, and
Y.-C.
Lai
,
Phys. Rev. E
93
,
062204
(
2016
).
51.
V. I.
Vagaitsev
,
N. V.
Kuznetsov
, and
G. A.
Leonov
,
Vestnik St. Petersburg Univ.: Math.
43
,
242
(
2010
).
You do not currently have access to this content.