We consider a problem of the analysis of the noise-induced tipping in population systems. To study this phenomenon, we use Hassell-type system with Allee effect as a conceptual model. A mathematical investigation of the tipping is connected with the analysis of the crisis bifurcations, both boundary and interior. In the parametric study of the abrupt changes in dynamics related to the noise-induced extinction and transition from order to chaos, the stochastic sensitivity function technique and confidence domains are used. The effectiveness of the suggested approach to detect early warnings of critical stochastic transitions is demonstrated.
References
1.
M.
Gladwell
, The Tipping Point: How Little Things Can Make a Big Difference
(Little Brown
, 2000
).2.
T. M.
Lenton
, H.
Held
, E.
Kriegler
, J. W.
Hall
, W.
Lucht
, S.
Rahmstorf
, and H. J.
Schellnhuber
, Proc. Natl. Acad. Sci. U. S. A.
105
(6
), 1786
(2008
).3.
T. M.
Lenton
, Nat. Clim. Change
1
(4
), 201
(2011
).4.
E.
Kriegler
, J. W.
Hall
, H.
Held
, R.
Dawson
, and H. J.
Schellnhuber
, Proc. Natl. Acad. Sci. U. S. A.
106
(13
), 5041
(2009
).5.
R. E.
Kopp
, R.
Shwom
, G.
Wagner
, and J.
Yuan
, Earth's Future
4
(8
), 346
(2016
).6.
M.
Oppenheimer
, C. M.
Little
, and R. M.
Cooke
, Nat. Clim. Change
6
(5
), 445
(2016
).7.
M.
Rietkerk
, S. C.
Dekker
, P. C.
de Ruiter
, and J.
van de Koppel
, Science
305
, 1926
(2004
).8.
M.
Scheffer
, J.
Bascompte
, W. A.
Brock
, V.
Brovkin
, S. R.
Carpenter
, V.
Dakos
, H.
Held
, E. H.
van Nes
, M.
Rietkerk
, and G.
Sugihara
, Nature
461
, 53
(2009
).9.
S. R.
Carpenter
, J. J.
Cole
, M. L.
Pace
, R.
Batt
, W. A.
Brock
, T.
Cline
, J.
Coloso
, J. R.
Hodgson
, J. F.
Kitchell
, D. A.
Seekell
, L.
Smith
, and B.
Weidel
, Science
332
, 1079
(2011
).10.
S.
Kraut
, U.
Feudel
, and C.
Grebogi
, Phys. Rev. E
59
, 5253
(1999
).11.
U.
Feudel
, Int. J. Bifurcation Chaos
18
, 1607
(2008
).12.
A. N.
Pisarchik
and U.
Feudel
, Phys. Rep.
540
, 167
(2014
).13.
A. D.
Bazykin
, Nonlinear Dynamics of Interacting Populations
(World Scientific
, 1998
).14.
G. A. K.
van Voorn
, L.
Hemerik
, M. P.
Boer
, and B. W.
Kooi
, Math. Biosci.
209
, 451
(2007
).15.
C.
Grebogi
, E.
Ott
, and J. A.
Yorke
, Physica D
7
, 181
(1983
).16.
L.
Cai
, G.
Chen
, and D.
Xiao
, J. Math. Biol.
67
, 185
(2013
).17.
S. J.
Schreiber
, Theor. Popul. Biol.
64
, 201
(2003
).18.
T. M.
Lenton
, Annu. Rev. Environ. Resour.
38
(1
), 1
(2013
).19.
W. C.
Allee
, Animal Aggregations: A Study in General Sociology
(University of Chicago Press
, Chicago, Illinois
, 1931
).20.
B.
Dennis
, Nat. Resour. Model.
3
, 481
(1989
).21.
F.
Courchamp
, L.
Berec
, and J.
Gascoigne
, Allee Effects in Ecology and Conservation
(Oxford University Press
, New York
, 2008
).22.
23.
R.
Lande
, S.
Engen
, and B. E.
Saether
, Stochastic Population Dynamics in Ecology and Conservation
(Oxford University Press
, Oxford, UK
, 2003
).24.
L. J. S.
Allen
and P.
van den Driessche
, Math. Biosci.
243
, 99
(2013
).25.
26.
M. P.
Hassell
, J. H.
Lawton
, and R. M.
May
, J. Anim. Ecol.
45
, 471
(1976
).27.
S. A.
Geritz
and E.
Kisdi
, J. Theor. Biol.
228
, 261
(2004
).28.
J.
Bascompte
and R. V.
Solé
, J. Anim. Ecol.
63
, 256
(1994
).29.
I.
Bashkirtseva
, L.
Ryashko
, and I.
Tsvetkov
, Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal.
17
, 501
(2010
).30.
I.
Bashkirtseva
and L.
Ryashko
, Int. J. Bifurcation Chaos
25
, 1550138
(2015
).31.
Y.-C.
Lai
and T.
Tél
, Transient Chaos: Complex Dynamics on Finite Time Scales
(Springer
, 2011
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.