We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.

1.
H.
Sutter
, “
The free lunch is over: A fundamental turn toward concurrency in software
,”
Dr. Dobb J.
30
,
202
210
(
2005
).
2.
T.
Chouard
and
L.
Venema
, “
Machine intelligence
,”
Nature
521
,
435–435
(
2015
).
3.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
4.
M. I.
Jordan
and
T. M.
Mitchell
, “
Machine learning: Trends, perspectives, and prospects
,”
Science
349
,
255
260
(
2015
).
5.
P. W.
Anderson
, “
More is different
,”
Science
177
,
393
396
(
1972
).
6.
K.
Uchida
,
M.
Saitoh
, and
S.
Kobayashi
,
IEEE Int. Electron Devices Meet.
2008
,
1
4
.
7.
M.
Hosomi
 et al,
IEEE Int. Electron Devices Meet.
2005
,
459
462
.
8.
R.
Takemura
 et al, “
A 32-Mb SPRAM with 2T1R memory cell, localized bi-directional write driver and1'/0'dual-array equalized reference scheme
,”
IEEE J. Solid-State Circ.
45
,
869
879
(
2010
).
9.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
1761
(
2006
).
10.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
11.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
1110
(
2011
).
12.
P.
Gambardella
and
I. M.
Miron
, “
Current-induced spin-orbit torques
,”
Philos. Trans. R. Soc., London A
369
,
3175
3197
(
2011
).
13.
I. M.
Miron
 et al, “
Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer
,”
Nat. Mater.
9
,
230
234
(
2010
).
14.
I. M.
Miron
 et al, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
193
(
2011
).
15.
U. H.
Pi
 et al, “
Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer
,”
Appl. Phys. Lett.
97
,
162507
(
2010
).
16.
X.
Wang
and
A.
Manchon
, “
Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction
,”
Phys. Rev. Lett.
108
,
117201
(
2012
).
17.
P.-H.
Chang
,
T.
Markussen
,
S.
Smidstrup
,
K.
Stokbro
, and
B. K.
Nikolić
, “
Nonequilibrium spin texture within a thin layer below the surface of current-carrying topological insulator Bi2Se3: A first-principles quantum transport study
,”
Phys. Rev. B
92
,
201406
(
2015
).
18.
X.
Duan
,
X.-L.
Li
,
Y. G.
Semenov
, and
K. W.
Kim
, “
Nonlinear magnetic dynamics in a nanomagnet topological insulator heterostructure
,”
Phys. Rev. B
92
,
115429
(
2015
).
19.
K.
Taguchi
,
K.
Shintani
, and
Y.
Tanaka
, “
Spin-charge transport driven by magnetization dynamics on the disordered surface of doped topological insulators
,”
Phys. Rev. B
92
,
035425
(
2015
).
20.
M.
Jamali
 et al, “
Giant spin pumping and inverse spin Hall effect in the presence of surface and bulk spin- orbit coupling of topological insulator Bi2Se3
,”
Nano Lett.
15
,
7126
7132
(
2015
).
21.
S.
Rex
,
F. S.
Nogueira
, and
A.
Sudbø
, “
Topological staggered field electric effect with bipartite magnets
,”
Phys. Rev. B
95
,
155430
(
2017
).
22.
X.-L.
Li
,
X.
Duan
,
Y. G.
Semenov
, and
K. W.
Kim
, “
Electrical switching of antiferromagnets via strongly spin-orbit coupled materials
,”
J. Appl. Phys.
121
,
023907
(
2017
).
23.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
L7
(
1996
).
24.
A.
Mellnik
 et al, “
Spin-transfer torque generated by a topological insulator
,”
Nature
511
,
449
451
(
2014
).
25.
D. C.
Ralph
and
M. D.
Stiles
, “
Spin transfer torques
,”
J. Magn. Magn. Mater.
320
,
1190
1126
(
2008
).
26.
G.-L.
Wang
,
H.-Y.
Xu
, and
Y.-C.
Lai
, “
Nonlinear dynamics induced anomalous Hall effect in topological insulators
,”
Sci. Rep.
6
,
19803
(
2016
).
27.
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
,
2002
).
28.
L.
Fu
and
C. L.
Kane
, “
Topological insulators with inversion symmetry
,”
Phys. Rev. B
76
,
045302
(
2007
).
29.
H.
Zhang
 et al, “
Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface
,”
Nat. Phys.
5
,
438
442
(
2009
).
30.
M.
König
 et al, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
770
(
2007
).
31.
D.
Hsieh
 et al, “
A topological Dirac insulator in a quantum spin Hall phase
,”
Nature
452
,
970
974
(
2008
).
32.
Y.
Xia
 et al, “
Observation of a large-gap topological-insulator class with a single Dirac cone on the surface
,”
Nat. Phys.
5
,
398
402
(
2009
).
33.
J. E.
Moore
, “
The birth of topological insulators
,”
Nature
464
,
194
198
(
2010
).
34.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
408
(
1982
).
35.
F. D. M.
Haldane
, “
Model for a quantum Hall effect without landau levels: Condensed-matter realization of the parity anomaly
,”
Phys. Rev. Lett.
61
,
2015
2018
(
1988
).
36.
M.
Schirber
, “
Nobel prize - topological phases of matter
,”
Physica
9
,
116
(
2016
).
37.
K. v.
Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
,
494
497
(
1980
).
38.
D.
Pesin
and
A. H.
MacDonald
, “
Spintronics and pseudospintronics in graphene and topological insulators
,”
Nat. Mater.
11
,
409
416
(
2012
).
39.
E. H.
Hall
, “
On a new action of the magnet on electric currents
,”
Am. J. Math.
2
,
287
292
(
1879
).
40.
R. B.
Laughlin
, “
Quantized Hall conductivity in two dimensions
,”
Phys. Rev. B
23
,
5632
5633
(
1981
).
41.
D. C.
Tsui
,
H. L.
Stormer
, and
A. C.
Gossard
, “
Two-dimensional magnetotransport in the extreme quantum limit
,”
Phys. Rev. Lett.
48
,
1559
1562
(
1982
).
42.
R. B.
Laughlin
, “
Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations
,”
Phys. Rev. Lett.
50
,
1395
1398
(
1983
).
43.
The Nobel Prize in Physics
1998
.
44.
H. L.
Stormer
,
D. C.
Tsui
, and
A. C.
Gossard
, “
The fractional quantum Hall effect
,”
Rev. Mod. Phys.
71
,
S298
S305
(
1999
).
45.
J. E.
Hirsch
, “
Spin Hall effect
,”
Phys. Rev. Lett.
83
,
1834
1837
(
1999
).
46.
S.
Murakami
,
N.
Nagaosa
, and
S.-C.
Zhang
, “
Dissipationless quantum spin current at room temperature
,”
Science
301
,
1348
1351
(
2003
).
47.
J.
Sinova
 et al, “
Universal intrinsic spin Hall effect
,”
Phys. Rev. Lett.
92
,
126603
(
2004
).
48.
B. A.
Bernevig
and
S.-C.
Zhang
, “
Quantum spin Hall effect
,”
Phys. Rev. Lett.
96
,
106802
(
2006
).
49.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge, England
,
1995
).
50.
M.
König
 et al, “
The quantum spin Hall effect: Theory and experiment
,”
J. Phys. Soc. Jpn.
77
,
031007
(
2008
).
51.
N.
Locatelli
,
V.
Cros
, and
J.
Grollier
, “
Spin-torque building blocks
,”
Nat. Mater.
13
,
11
20
(
2014
).
52.
M.
Gajek
 et al, “
Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy
,”
Appl. Phys. Lett.
100
,
132408
(
2012
).
53.
A.
Brataas
,
A. D.
Kent
, and
H.
Ohno
, “
Current-induced torques in magnetic materials
,”
Nat. Mater.
11
,
372
381
(
2012
).
54.
M. N.
Baibich
 et al, “
Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices
,”
Phys. Rev. Lett.
61
,
2472
2475
(
1988
).
55.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
, “
Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
,”
Phys. Rev. B
39
,
4828
4830
(
1989
).
56.
The Nobel Prize in Physics
2007
.
57.
L.
Liu
 et al, “
Spin-torque switching with the giant spin Hall effect of tantalum
,”
Science
336
,
555
558
(
2012
).
58.
C.
Safeer
 et al, “
Spin–orbit torque magnetization switching controlled by geometry
,”
Nat. Nanotechnol.
11
,
143
146
(
2016
).
59.
T.
Yokoyama
, “
Current-induced magnetization reversal on the surface of a topological insulator
,”
Phys. Rev. B
84
,
113407
(
2011
).
60.
Y. G.
Semenov
,
X.
Duan
, and
K. W.
Kim
, “
Voltage-driven magnetic bifurcations in nanomagnet–topological insulator heterostructures
,”
Phys. Rev. B
89
,
201405
(
2014
).
61.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
, “
Final state sensitivity: An obstruction to predictability
,”
Phys. Lett. A
99
,
415
418
(
1983
).
62.
S. W.
McDonald
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Fractal basin boundaries
,”
Physica D
17
,
125
153
(
1985
).
63.
U.
Feudel
,
C.
Grebogi
,
B. R.
Hunt
, and
J. A.
Yorke
, “
Map with more than 100 coexisting low-period periodic attractors
,”
Phys. Rev. E
54
,
71
81
(
1996
).
64.
U.
Feudel
and
C.
Grebogi
, “
Multistability and the control of complexity
,”
Chaos
7
,
597
604
(
1997
).
65.
S.
Kraut
,
U.
Feudel
, and
C.
Grebogi
, “
Preference of attractors in noisy multistable systems
,”
Phys. Rev. E
59
,
5253
5260
(
1999
).
66.
S.
Kraut
and
U.
Feudel
, “
Multistability, noise, and attractor hopping: The crucial role of chaotic saddles
,”
Phys. Rev. E
66
,
015207
(
2002
).
67.
S.
Kraut
and
U.
Feudel
, “
Enhancement of noise-induced escape through the existence of a chaotic saddle
,”
Phys. Rev. E
67
,
015204(R)
(
2003
).
68.
S.
Kraut
and
U.
Feudel
, “
Noise-induced escape through a chaotic saddle: Lowering of the activation energy
,”
Physica D
181
,
222
234
(
2003
).
69.
U.
Feudel
and
C.
Grebogi
, “
Why are chaotic attractors rare in multistable systems?
,”
Phys. Rev. Lett.
91
,
134102
(
2003
).
70.
C. N.
Ngonghala
,
U.
Feudel
, and
K.
Showalter
, “
Extreme multistability in a chemical model system
,”
Phys. Rev. E
83
,
056206
(
2011
).
71.
M. S.
Patel
 et al, “
Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators
,”
Phys. Rev. E
89
,
022918
(
2014
).
72.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
,
167
218
(
2014
).
73.
Q.
Chen
,
L.
Huang
,
Y.-C.
Lai
,
C.
Grebogi
, and
D.
Dietz
, “
Extensively chaotic motion in electrostatically driven nanowires and applications
,”
Nano Lett.
10
,
406
413
(
2010
).
74.
X.
Ni
,
L.
Ying
,
Y.-C.
Lai
,
Y.
Do
, and
C.
Grebogi
, “
Complex dynamics in nanosystems
,”
Phys. Rev. E
87
,
052911
(
2013
).
75.
L.
Ying
,
D.
Huang
, and
Y.-C.
Lai
, “
Multistability, chaos, and random signal generation in semiconductor superlattices
,”
Phys. Rev. E
93
,
062204
(
2016
).
76.
J. C.
Alexander
,
J. A.
Yorke
,
Z.
You
, and
I.
Kan
, “
Riddled basins
,”
Int. J. Bifur. Chaos Appl. Sci. Eng.
2
,
795
813
(
1992
).
77.
E.
Ott
,
J. C.
Alexander
,
I.
Kan
,
J. C.
Sommerer
, and
J. A.
Yorke
, “
The transition to chaotic attractors with riddled basins
,”
Physica D
76
,
384
410
(
1994
).
78.
P.
Ashwin
,
J.
Buescu
, and
I.
Stewart
, “
Bubbling of attractors and synchronisation of oscillators
,”
Phys. Lett. A
193
,
126
139
(
1994
).
79.
J. F.
Heagy
,
T. L.
Carroll
, and
L. M.
Pecora
, “
Experimental and numerical evidence for riddled basins in coupled chaotic systems
,”
Phys. Rev. Lett.
73
,
3528
3531
(
1994
).
80.
Y.-C.
Lai
,
C.
Grebogi
,
J. A.
Yorke
, and
S.
Venkataramani
, “
Riddling bifurcation in chaotic dynamical systems
,”
Phys. Rev. Lett.
77
,
55
58
(
1996
).
81.
Y.-C.
Lai
and
C.
Grebogi
, “
Noise-induced riddling in chaotic dynamical systems
,”
Phys. Rev. Lett.
77
,
5047
5050
(
1996
).
82.
P.
Ashwin
,
J.
Buescu
, and
I.
Stewart
, “
From attractor to chaotic saddle: A tale of transverse instability
,”
Nonlinearity
9
,
703
737
(
1996
).
83.
Y.-C.
Lai
and
V.
Andrade
, “
Catastrophic bifurcation from riddled to fractal basins
,”
Phys. Rev. E
64
,
056228
(
2001
).
84.
Y.-C.
Lai
, “
Scaling laws for noise-induced temporal riddling in chaotic systems
,”
Phys. Rev. E
56
,
3897
3908
(
1997
).
85.
L.
Billings
,
J. H.
Curry
, and
E.
Phipps
, “
Lyapunov exponents, singularities, and a riddling bifurcation
,”
Phys. Rev. Lett.
79
,
1018
1021
(
1997
).
86.
Y.-C.
Lai
and
C.
Grebogi
, “
Riddling of chaotic sets in periodic windows
,”
Phys. Rev. Lett.
83
,
2926
2929
(
1999
).
87.
Y.-C.
Lai
, “
Catastrophe of riddling
,”
Phys. Rev. E
62
,
R4505
R4508
(
2000
).
88.
Y.-C.
Lai
and
T.
Tél
,
Transient Chaos - Complex Dynamics on Finite Time Scales
(
Springer
,
New York
,
2011
).
You do not currently have access to this content.