Managing supply networks is a highly relevant task that strongly influences the competitiveness of firms from various industries. Designing supply networks is a strategic process that considerably affects the structure of the whole network. In contrast, supply networks for new products are configured without major adaptations of the existing structure, but the network has to be configured before the new product is actually launched in the marketplace. Due to dynamics and uncertainties, the resulting planning problem is highly complex. However, formal models and solution approaches that support supply network configuration decisions for new products are scant. The paper at hand aims at stimulating related model-based research. To formulate mathematical models and solution procedures, a benchmarking problem is introduced which is derived from a case study of a cosmetics manufacturer. Tasks, objectives, and constraints of the problem are described in great detail and numerical values and ranges of all problem parameters are given. In addition, several directions for future research are suggested.

1.
Amini
,
M.
and
Li
,
H.
, “
Supply chain configuration for diffusion of new products: An integrated optimization approach
,”
Omega
39
,
313
322
(
2011
).
2.
Amini
,
M.
,
Wakolbinger
,
T.
,
Racer
,
M.
, and
Nejad
,
M. G.
, “
Alternative supply chain production-sales policies for new product diffusion: An agent-based modeling and simulation approach
,”
Eur. J. Oper. Res.
216
,
301
311
(
2012
).
3.
Birge
,
J. R.
and
Louveaux
,
F.
,
Introduction to Stochastic Programming
, 2nd ed. (
Springer
,
Berlin, Heidelberg, New York
,
2010
).
4.
Brandenburg
,
M.
, “
Low carbon supply chain configuration for a new product—A goal programming approach
,”
Int. J. Prod. Res.
53
,
6588
6610
(
2015
).
5.
Brandenburg
,
M.
, “
A hybrid approach to configureeco-efficient supply chains under consideration of performance and risk aspects
,”
Omega
70
,
58
76
(
2017
).
6.
Brandenburg
,
M.
,
Kuhn
,
H.
,
Schilling
,
R.
, and
Seuring
,
S.
, “
Performance- and value-oriented decision support for supply chain configuration—A discrete-event simulation model and a case study of an FMCG manufacturer
,”
Logist. Res.
7
(
1
),
1
16
(
2014
).
7.
Brandenburg
,
M.
and
Schilling
,
R.
, “
Value impacts of dynamics and uncertainty in tactical supply chain design for new product introduction
,” in
Wirtschaftsinformatik, Entscheidungstheorie und -praxis (Business Informatics, Decision Theory and Practice)
, edited by
M.
Geiger
,
J.
Geldermann
, and
S.
Voß
(
Shaker
,
Aachen
,
2012
) pp.
23
46
.
8.
Brealey
,
R. A.
,
Myers
,
S. C.
, and
Allen
,
F.
,
Principles of Corporate Finance
, 9th ed. (
McGraw-Hill Irwin
,
Boston
,
2008
).
9.
Butler
,
R.
,
Ammons
,
J.
, and
Sokol
,
J.
, “
Planning the supply chain network for new products: A case study
,”
Eng. Manage. J.
18
,
35
43
(
2006
).
10.
Chauhan
,
S.
,
Nagi
,
R.
, and
Proth
,
J.-M.
, “
Strategic capacity planning in supply chain design for a new market opportunity
,”
Int. J. Prod. Res.
42
(
11
),
2197
2206
(
2004
).
11.
Cooper
,
M. C.
,
Lambert
,
D. M.
, and
Pagh
,
J. D.
, “
Supply chain management: More than a new name for logistics
,”
Int. J. Logis. Manage.
8
,
1
14
(
1997
).
12.
Faisal
,
M.
,
Banwet
,
D.
, and
Shankar
,
R.
, “
Information risks management in supply chains: An assessment and mitigation framework
,”
Inf. Manage.
20
,
677
699
(
2007
).
13.
Fattahi
,
M.
,
Mahootchi
,
M.
,
Govindan
,
K.
, and
Husseini
,
S. M. M.
, “
Dynamic supply chain network design with capacity planning and multi-period pricing
,”
Transp. Res. E
81
,
169
202
(
2015
).
14.
Gan
,
T.-S.
and
Grunow
,
M.
, “
Concurrent product–supply chain design: A conceptual framework & literature review
,”
Procedia CIRP
7
,
91
96
(
2013
).
15.
Graves
,
S.
and
Willems
,
S.
, “
Optimizing the supply chain configuration for new products
,”
Manage. Sci.
51
,
1165
1180
(
2005
).
16.
Hamacher
,
K.
, “
Dynamical regimes due to technological change in a microeconomical model of production
,”
Chaos
22
,
033149
(
2012
).
17.
Hansen
,
K. R. N.
and
Grunow
,
M.
, “
Planning operations before market launch for balancing time-to-market and risks in pharmaceutical supply chains
,”
Int. J. Prod. Econ.
161
,
129
139
(
2015
).
18.
Heckmann
,
I.
,
Comes
,
T.
, and
Nickel
,
S.
, “
A critical review on supply chain risk—Definition, measure and modeling
,”
Omega
52
,
119
132
(
2015
).
19.
Higuchi
,
T.
and
Troutt
,
M. D.
, “
Dynamic simulation of the supply chain for a short life cycle product—Lessons from the Tamagotchi case
,”
Comput. Oper. Res.
31
,
1097
1114
(
2004
).
20.
Hulting
,
E. J.
,
Hart
,
S.
,
Robben
,
H. S.
, and
Griffin
,
A.
, “
Launch decisions and new product success: An empirical comparison of consumer and industrial products
,”
J. Prod. Innov. Manage.
17
,
5
23
(
2000
).
21.
Hwarng
,
H. B.
and
Xie
,
N.
, “
Understanding supply chain dynamics: A chaos perspective
,”
Eur. J. Oper. Res.
184
,
1163
1178
(
2008
).
22.
Hwarng
,
H. B.
and
Yuan
,
X.
, “
Interpreting supply chain dynamics: A quasi-chaos perspective
,”
Eur. J. Oper. Res.
233
,
566
579
(
2014
).
23.
Inman
,
R. R.
and
Blumenfeld
,
D. E.
, “
Product complexity and supply chain design
,”
Int. J. Prod. Res.
52
,
1956
1969
(
2014
).
24.
Inman
,
R. R.
and
Gonsalvez
,
D. J.
, “
A mass production product-to-plant allocation problem
,”
Comput. Ind. Eng.
39
,
255
271
(
2001
).
25.
Ivanov
,
D.
, “
An adaptive framework for aligning (re)planning decisions on supply chain strategy, design, tactics, and operations
,”
Int. J. Prod. Res.
48
,
3999
4017
(
2010
).
26.
Kumar
,
R. S.
and
Pugazhendhi
,
S.
, “
Information sharing in supply chains: An overview
,”
Procedia Eng.
38
,
2147
2154
(
2012
).
27.
Lambert
,
D. M.
and
Burduroglu
,
R.
, “
Measuring and selling the value of logistics
,”
Int. J. Logis. Manage.
11
,
1
17
(
2000
).
28.
Lee
,
H. L.
,
Padmanabhan
,
V.
, and
Whang
,
S.
, “
The bullwhip effect in supply chains
,”
Sloan Manage. Rev.
38
,
93
102
(
1997a
).
29.
Lee
,
H. L.
,
Padmanabhan
,
V.
, and
Whang
,
S.
, “
Information distortion in a supply chain: The bullwhip effect
,”
Manage. Sci.
43
,
546
558
(
1997b
).
30.
Lei
,
Z.
,
Li
,
Y.
, and
Xu
,
Y.
, “
Chaos synchronization of bullwhip effect in a supply chain
,” in
International Conference on Management Science and Engineering
(
2006
), pp.
557
560
.
31.
Li
,
H.
and
Womer
,
K.
, “
Optimizing the supply chain configuration for make-to-order manufacturing
,”
Eur. J. Oper. Res.
221
,
118
128
(
2012
).
32.
Linsmeier
,
T. J.
and
Pearson
,
N. D.
, “
Value at risk
,”
Financ. Anal. J.
56
,
47
67
(
2000
).
33.
Makridakis
,
S.
and
Winkler
,
R. L.
, “
Averages of forecasts: Some empirical results
,”
Manage. Sci.
29
,
987
996
(
1983
).
34.
McCutcheon
,
J.
and
Scott
,
W. F.
,
An Introduction to the Mathematics of Finance
(
Butterworth-Heinemann
,
2004
).
35.
Meixell
,
M. J.
and
Gargeya
,
V. B.
, “
Global supply chain design: A literature review and critique
,”
Transp. Res. E
41
,
531
550
(
2005
).
36.
Melo
,
M.
,
Nickel
,
S.
, and
Saldanha-da-Gama
,
F.
, “
Facility location and supply chain management—A review
,”
Eur. J. Oper. Res.
196
,
401
412
(
2009
).
37.
Mentzer
,
J. T.
,
DeWitt
,
W.
,
Keebler
,
J. S.
,
Min
,
S.
,
Nix
,
N. W.
,
Smith
,
C. D.
, and
Zacharia
,
Z. G.
, “
Defining supply chain management
,”
J. Bus. Logis.
22
,
1
25
(
2001
).
38.
Pan
,
F.
and
Nagi
,
R.
, “
Robust supply chain design under uncertain demand in agile manufacturing
,”
Comput. Oper. Res.
37
,
668
683
(
2010
).
39.
Pecora
,
L. M.
and
Carroll
,
T. L.
, “
Synchronization of chaotic systems
,”
Chaos
25
,
097611
(
2015
).
40.
Pero
,
M.
,
Abdelkafi
,
N.
,
Sianesi
,
A.
, and
Blecker
,
T.
, “
A framework for the alignment of new product development and supply chains
,”
Supply Chain Manage.
15
,
115
128
(
2010
).
41.
Phillips
,
R. L.
,
Pricing and Revenue Optimization
(
Stanford University Press
,
2005
).
42.
Quinn
,
J. B.
and
Hilmer
,
F. G.
, “
Strategic outsourcing
,”
Sloan Manage. Rev.
35
,
43
55
(
1994
).
43.
Schilling
,
R.
,
Kuhn
,
H.
, and
Brandenburg
,
M.
, “
Simulation-based evaluation of tactical supply chain design scenarios for new product introduction
,” in
Proceedings of the 17th International Annual EurOMA Conference
, edited by
R.
Sousa
(
European Operations Management Association
,
2010
).
44.
Serdarasan
,
S.
, “
A review of supply chain complexity drivers
,”
Comput. Ind. Eng.
66
,
533
540
(
2013
).
45.
Shapiro
,
J. F.
,
Modeling the Supply Chain
, 2nd ed. (
Brooks/Cole
,
2007
).
46.
Snyder
,
L. V.
, “
Facility location under uncertainty: A review
,”
IIE Trans.
38
,
547
564
(
2006
).
47.
Surana
,
A.
,
Kumara
,
S.
,
Greaves
,
M.
, and
Raghavan
,
U. N.
, “
Supply-chain networks: A complex adaptive systems perspective
,”
Int. J. Prod. Res.
43
,
4235
4265
(
2005
).
48.
Talluri
,
K. T.
and
Ryzin
,
G. J. V.
,
The Theory and Practice of Revenue Management
(
Springer Science & Business Media
,
2006
).
49.
Tang
,
C. S.
, “
Perspectives in supply chain risk management
,”
Int. J. Prod. Econ.
103
,
451
488
(
2006
).
50.
Tang
,
O.
and
Musa
,
S.
, “
Identifying risk issues and research advancements in supply chain risk management
,”
Int. J. Prod. Econ.
133
,
25
34
(
2011
).
51.
Waller
,
M.
,
Johnson
,
M. E.
, and
Davis
,
T.
, “
Vendor-managed inventory in the retail supply chain
,”
J. Bus. Logis.
20
,
183
203
(
1999
).
52.
Wang
,
G.
,
Huang
,
S. H.
, and
Dismukes
,
J. P.
, “
Product-driven supply chain selection using integrated multi-criteria decision-making methodology
,”
Int. J. Prod. Econ.
91
,
1
15
(
2004
).
53.
Wang
,
X.
,
Disney
,
S. M.
, and
Wang
,
J.
, “
Exploring the oscillatory dynamics of a forbidden returns inventory system
,”
Int. J. Prod. Econ.
147
,
3
12
(
2014
).
54.
Wiedmann
,
T.
and
Minx
,
J.
, “
A definition of ‘carbon footprint’
,” in
Ecological Economics Research Trends
, edited by
C. C.
Pertsova
(
Nova Science Publishers
,
Hauppauge, NY, USA
,
2008
), pp.
1
11
.
55.
Zhang
,
J.
and
Chen
,
J.
, “
Coordination of information sharing in a supply chain
,”
Int. J. Prod. Econ.
143
,
178
187
(
2013
).
You do not currently have access to this content.