The adiabatic decay of different types of internal wave solitons caused by the Earth's rotation is studied within the framework of the Gardner–Ostrovsky equation. The governing equation describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq and Coriolis dispersions: (ut + c ux + α u ux + α1u2ux + β uxxx)x = γ u. It is shown that at the early stage of evolution solitons gradually decay under the influence of weak Earth's rotation described by the parameter γ. The characteristic decay time is derived for different types of solitons for positive and negative coefficients of cubic nonlinearity α1 (both signs of that parameter may occur in the oceans). The coefficient of quadratic nonlinearity α determines only a polarity of solitary wave when α1 < 0 or the asymmetry of solitary waves of opposite polarity when α1 > 0. It is found that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast to that, large amplitude table-top solitons, which can exist when α1 is negative, are structurally unstable. Under the influence of Earth's rotation, they transfer first to the bell-shaped solitons, which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are presented for the real oceanographic conditions.

1.
Apel
,
J.
,
Ostrovsky
,
L. A.
,
Stepanyants
,
Y. A.
, and
Lynch
,
J. F.
, “
Internal solitons in the ocean and their effect on underwater sound
,”
J. Acoust. Soc. Am.
121
,
695
722
(
2007
).
2.
Clarke
,
S.
,
Gorshkov
,
K.
,
Grimshaw
,
R.
, and
Stepanyants
,
Y.
, “
Decay of Kadomtsev–Petviashvili lumps in dissipative media
,”
Physica D
366
,
43
50
(
2018
).
3.
Dingemans
,
M. W.
,
Water Wave Propagation Over Uneven Bottoms
, Parts 1 and 2 (
World Scientific
,
1997
).
4.
Fraunie
,
P.
and
Stepanyants
,
Y.
, “
Decay of cylindrical and spherical solitons in rotating media
,”
Phys. Lett. A.
293
(
3–4
),
166
172
(
2002
).
5.
Galkin
,
V. M.
and
Stepanyants
,
Yu. A.
, “
On the existence of stationary solitary waves in a rotating fluid
,”
J. Appl. Math. Mech.
55
(
6
),
939
943
(
1991
).
6.
Gorshkov
,
K. A.
,
Soustova
,
I. A.
,
Ermoshkin
,
A. V.
, and
Zaytseva
,
N. V.
, “
Evolution of the compound Gardner-equation soliton in the media with variable parameters
,”
Radiophys. Quantum Electron.
55
,
344
356
(
2012
).
7.
Grimshaw
,
R.
,
Pelinovsky
,
E. N.
, and
Talipova
,
T. G.
, “
The modifed Korteweg–de Vries equation in the theory of large-amplitude internal waves
,”
Nonlin. Processes Geophys.
4
,
237
250
(
1997
).
8.
Grimshaw
,
R. H. J.
,
He
,
J.-M.
, and
Ostrovsky
,
L. A.
, “
Terminal damping of a solitary wave due to radiation in rotational systems
,”
Stud. Appl. Math.
101
,
197
210
(
1998a
).
9.
Grimshaw
,
R.
,
Ostrovsky
,
L. A.
,
Shrira
,
V. I.
, and
Stepanyants
,
Yu. A.
, “
Long nonlinear surface and internal gravity waves in a rotating ocean
,”
Surv. Geophys.
19
,
289
338
(
1998b
).
10.
Grimshaw
,
R.
,
Pelinovsky
,
E. N.
, and
Talipova
,
T. G.
, “
Damping of large-amplitude solitary waves
,”
Wave Motion
37
,
351
364
(
2003
).
11.
Grimshaw
,
R.
,
Pelinovsky
,
E. N.
, and
Talipova
,
T. G.
, “
Modelling internal solitary waves in the coastal ocean
,”
Serv. Geophys.
28
,
273
298
(
2007
).
12.
Grimshaw
,
R.
and
Helfrich
,
K.
, “
Long-time solutions of the Ostrovsky equation
,”
Stud. Appl. Math.
121
,
71
88
(
2008
).
13.
Grimshaw
,
R.
,
Pelinovsky
,
E. N.
,
Talipova
,
T. G.
, and
Kurkina
,
O. E.
, “
Internal solitary waves: Propagation, deformation and disintegration
,”
Nonlin. Processes Geophys.
17
,
633
649
(
2010
).
14.
Grimshaw
,
R.
and
Helfrich
,
K.
, “
The effect of rotation on internal solitary waves
,”
IMA J. Appl. Math.
77
,
326
339
(
2012
).
15.
Grimshaw
,
R. H. J.
,
Helfrich
,
K. R.
, and
Johnson
,
E. R.
, “
Rotation-induced nonlinear wavepackets in internal waves
,”
Phys. Fluids
25
,
056602
(
2013
).
16.
Grimshaw
,
R.
,
Slunyaev
,
A.
, and
Pelinovsky
,
E.
, “
Generation of solitons and breathers in the extended Korteweg–de Vries equation with positive cubic nonlinearity
,”
Chaos
20
,
013102
(
2010
).
17.
Grimshaw
,
R.
,
Stepanyants
,
Y.
, and
Alias
A.
, “
Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion
,”
Proc. R. Soc. A
472
,
20150416
(
2016
).
18.
Grimshaw
,
R.
,
Smyth
,
N.
, and
Stepanyants
Y.
, “
Decay of Benjamin–Ono solitons under the influence of dissipation
,”
Wave Motion
78
,
98
115
(
2018
).
19.
Helfrich
,
K. R.
, “
Decay and return of internal solitary waves with rotation
,”
Phys. Fluids
19
,
026601
(
2007
).
20.
Holloway
,
P.
,
Pelinovsky
,
E
, and
Talipova
,
T.
, “
A generalised Korteweg–de Vries model of internal tide transformation in the coastal zone
,”
J. Geophys. Res.
104
,
18,333
18,350
, (
1999
).
21.
Leonov
,
A. I.
, “
The effect of Earth rotation on the propagation of weak nonlinear surface and internal long oceanic waves
,”
Ann. NYAcad. Sci.
373
,
150
159
(
1981
).
22.
Michallet
,
H.
and
Barthélemy
E.
, “
Experimental study of interfacial solitary waves
,”
J. Fluid Mech.
366
,
159
177
(
1998
).
23.
Nakoulima
,
O.
,
Zahibo
,
N.
,
Pelinovsky
,
E.
,
Talipova
,
T.
,
Slunyaev
,
A.
, and
Kurkin
,
A.
, “
Analytical and numerical studies of the variable-coefficient Gardner equation
,”
Appl. Math. Comput.
152
(
2
),
449
471
(
2004
).
24.
Obregon
,
M.
,
Raj
,
N.
, and
Stepanyants
,
Y.
, “
Numerical study of nonlinear wave processes by means of discrete chain models
,”
Proceedings of 4th International Conference on Computational Methods (ICCM2012)
(
25–27 November 2012
),
Gold Coast, Australia
(www.ICCM-2012.org).
25.
Obregon
,
M.
and
Stepanyants
,
Y.
, “
On numerical solution of the Gardner–Ostrovsky equation
,”
Math. Mod. Nat. Phenom.
7
(
2
),
113
130
(
2012
).
26.
Obregon
,
M.
and
Stepanyants
,
Y.
, “
On stationary solutions of the reduced Gardner–Ostrovsky equation
,”
Discontin. Nonlinearity Complex.
3
(
4
),
445
456
(
2014
).
27.
Ostrovsky
,
L. A.
, “
Nonlinear internal waves in a rotating ocean
,”
Oceanology
18
,
119
125
(
1978
).
28.
Ostrovsky
,
L. A.
and
Stepanyants
,
Yu. A.
, “
Nonlinear surface and internal waves in rotating fluids
,” in
Nonlinear Waves 3
, Proceedings of 1989 Gorky School on Nonlinear Waves, edited by
A. V.
Gaponov-Grekhov
,
M. I.
Rabinovich
, and
J.
Engelbrecht
(
Springer-Verlag
,
Berlin–Heidelberg
,
1990
), pp.
106
128
.
29.
Ostrovsky
,
L. A.
and
Stepanyants
,
Y. A.
, “
Internal solitons in laboratory experiments: Comparison with theoretical models
,”
Chaos
15
,
037111
(
2005
).
30.
Ostrovsky
,
L. A.
,
Pelinovsky
,
E. N.
,
Shrira
,
V. I.
, and
Stepanyants
Y. A.
, “
Beyond the KDV: Post-explosion development
,”
Chaos
25
(
9
),
097620
(
2015
).
31.
Pelinovsky
,
D. E.
and
Grimshaw
,
R. H. J.
, “
Structural transformation of eigenvalues for a perturbed algebraic soliton potential
,”
Phys. Lett. A
229
,
165
172
(
1997
).
32.
Slyunyaev
,
A. V.
, “
Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity
,”
Sov. Phys. JETP
92
,
529
531
(
2001
).
33.
Slyunyaev
,
A. V.
and
Pelinovskii
,
E. N.
, “
Dynamics of large-amplitude solitons
,”
Sov. Phys. JETP
89
,
173
181
(
1999
).
34.
Stepanyants
,
Y. A.
, “
On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons
,”
Chaos Solitons Fractals
28
,
193
204
(
2006
).
35.
Talipova
,
T. G.
,
Pelinovsky
,
E. N.
,
Lamb
,
K.
,
Grimshaw
,
R.
, and
Holloway
,
P.
, “
Cubic nonlinearity effects in the propagation of intense internal waves
,”
Doklady Earth Sci.
365
(
2
),
241
244
(
1999
).
36.
Whitfield
,
A. J.
and
Johnson
,
E. R.
, “
Rotation-induced nonlinear wavepackets in internal waves
,”
Phys. Fluids
26
,
056606
(
2014
).
37.
Whitfield
,
A. J.
and
Johnson
,
E. R.
, “
Wave-packet formation at the zero-dispersion point in the Gardner–Ostrovsky equation
,”
Phys. Rev. E
91
,
051201(R)
(
2015
).
38.
Whitham
,
G. B.
,
Linear and Nonlinear Waves
(
John Wiley & Sons
,
1974
), p.
636
.
You do not currently have access to this content.