The dynamic modes of five almost identical oscillators with pulsatile inhibitory coupling with time delay have been studied theoretically. The models of the Belousov–Zhabotinsky reaction and phase oscillators with all-to-all coupling have been considered. In the parametric plane Cinh–τ, where Cinh is the coupling strength and τ is the time delay between a spike in one oscillator and pulsed perturbations of all other oscillators, three main regimes have been found: regular modes, when each oscillator gives only one spike during the global period T, C (complex) modes, when the number of pulses of different oscillators is different, and OS (oscillations-suppression) modes, when at least one oscillator is suppressed. The regular modes consist of several cluster modes and are found at relatively small Cinh. The C and OS modes observed at larger Cinh intertwine in the Cinh–τ plane. In a relatively narrow range of Cinh, the dynamics of the C modes are very sensitive to small changes in Cinh and τ, as well as to the initial conditions, which are the characteristic features of the chaos. On the other hand, the dynamics of the C modes are periodic (but with different periods) and well reproducible. The number of different C modes is enormously large. At still larger Cinh, the C modes lose sensitivity to small changes in the parameters and finally vanish, while the OS modes survive.

1.
D. M.
Abrams
,
L. M.
Pecora
, and
A. E.
Motter
, “
Introduction to focus issue: Patterns of network synchronization
,”
Chaos
26
,
094601
(
2016
).
2.
A.
Arenas
 et al., “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
3.
V. V.
Klinshov
and
V. I.
Nekorkin
, “
Synchronization of delay-coupled oscillator networks
,”
Phys.-Usp.
56
,
1217
1229
(
2013
).
4.
H.
Haken
,
Brain Dynamics: Sychronization and Activity Patterns in Pulse-Coupled Neural Nets With Delays and Noise
(
Springer
,
Berlin
,
2007
).
5.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
6.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
384
(
2002
).
7.
M.
Rabinovich
,
R.
Huerta
, and
G.
Laurent
, “
Neuroscience: Transient dynamics for neural processing
,”
Science
321
,
48
50
(
2008
).
8.
M. I.
Rabinovich
,
P.
Varona
,
I.
Tristan
, and
V. S.
Afraimovich
, “
Chunking dynamics: Heteroclinics in mind
,”
Front. Comput. Neurosci.
8
,
22
(
2014
).
9.
P.
Ashwin
and
M.
Field
, “
Heteroclinic networks in coupled cell systems
,”
Arch. Ration. Mech. Anal.
148
,
107
143
(
1999
).
10.
P.
Ashwin
and
J.
Borresen
, “
Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators
,”
Phys. Rev. E
70
,
026203
(
2004
).
11.
F. S.
Neves
and
M.
Timme
, “
Computation by switching in complex networks of states
,”
Phys. Rev. Lett.
109
,
018701
(
2012
).
12.
V.
Horvath
,
P. L.
Gentili
,
V. K.
Vanag
, and
I. R.
Epstein
, “
Pulse-coupled chemical oscillators with time delay
,”
Angew. Chem. Int. Ed.
51
,
6878
6881
(
2012
).
13.
I. S.
Proskurkin
,
A. I.
Lavrova
, and
V. K.
Vanag
, “
Inhibitory and excitatory pulse coupling of two frequency-different chemical oscillators with time delay
,”
Chaos
25
,
064601
(
2015
).
14.
D. A.
Safonov
,
V. V.
Klinshov
, and
V. K.
Vanag
, “
Dynamical regimes of four oscillators with excitatory pulse coupling
,”
Phys. Chem. Chem. Phys.
19
,
12490
(
2017
).
15.
P. S.
Smelov
and
V. K.
Vanag
, “
Experimental investigation of a unidirectional network of four chemical oscillators pulse-coupled through an inhibitor
,”
Russ. J. Phys. Chem. A
91
,
1015
1020
(
2017
).
16.
V. K.
Vanag
,
P. S.
Smelov
, and
V. V.
Klinshov
, “
Dynamical regimes of four almost identical chemical oscillators coupled via pulse inhibitory coupling with time delay
,”
Phys. Chem. Chem. Phys.
18
,
5509
5520
(
2016
).
17.
F. S.
Neves
and
M.
Timme
, “
Controlled perturbation-induced switching in pulse-coupled oscillator networks
,”
J. Phys. A
42
,
345103
(
2009
).
18.
Y.
Horikawa
, “
Exponential transient propagating oscillations in a ring of spiking neurons with unidirectional slow inhibitory synaptic coupling
,”
J. Theor. Biol.
289
,
151
159
(
2011
).
19.
D.
Goldstein
,
M.
Giver
, and
B.
Chakraborty
, “
Synchronization patterns in geometrically frustrated rings of relaxation oscillators
,”
Chaos
25
,
123109
(
2015
).
20.
F. S.
Neves
,
M.
Voit
, and
M.
Timme
, “
Noise-constrained switching times for heteroclinic computing
,”
Chaos
27
,
033107
(
2017
).
21.
P.
Ashwin
,
G.
Orosz
,
J.
Wordsworth
, and
S.
Townley
, “
Dynamics on networks of cluster states for globally coupled phase oscillators
,”
SIAM J. Appl. Dyn. Syst.
6
,
728
758
(
2007
).
22.
B.
Kralemann
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Reconstructing phase dynamics of oscillator networks
,”
Chaos
21
,
025104
(
2011
).
23.
A. I.
Lavrova
and
V. K.
Vanag
, “
Two pulse-coupled non-identical, frequency-different BZ oscillators with time delay
,”
Phys. Chem. Chem. Phys.
16
,
6764
6772
(
2014
).
24.
B. P.
Belousov in
,
Collection of Short Papers on Radiation Medicine
(
Medgiz
,
Moscow
,
1959
), p.
145
.
25.
A. M.
Zhabotinsky
, “
Periodic liquid phase reactions
,”
Proc. Acad. Sci. USSR
157
,
392
395
(
1964
).
26.
C. C.
Canavier
and
S.
Achuthan
, “
Pulse coupled oscillators and the phase resetting curve
,”
Math. Biosci.
226
,
77
96
(
2010
).
27.
P.
Goel
and
B.
Ermentrout
, “
Synchrony, stability, and firing patterns in pulse-coupled oscillators
,”
Physica D
163
,
191
216
(
2002
).
28.
V. K.
Vanag
and
I. R.
Epstein
, “
A model for jumping and bubble waves in the Belousov-Zhabotinsky-aerosol OT system
,”
J. Chem. Phys.
131
,
104512
(
2009
).
29.
30.
M. J.
Feigenbaum
, “
Quantitative universality for a class of non-linear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1978
).
31.
M. I.
Rabinovich
,
R.
Huerta
,
P.
Varona
, and
V. S.
Afraimovich
, “
Transient cognitive dynamics, metastability, and decision making
,”
PLoS Comput. Biol.
4
,
e1000072
(
2008
).
32.
J. E.
Hirsch
,
B. A.
Huberman
, and
D. J.
Scalapino
, “
Theory of intermittency
,”
Phys. Rev. A
25
,
519
532
(
1982
).
33.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation
,”
Phys. Rev. Lett.
50
(
13
),
935
938
(
1983
).
34.
V.
Klinshov
,
D.
Shchapin
,
S.
Yanchuk
, and
V.
Nekorkin
, “
Jittering waves in rings of pulse oscillators
,”
Phys. Rev. E
94
,
012206
(
2016
).
You do not currently have access to this content.