The double-curl Beltrami magnetic field in the presence of a uniform mean field is considered for investigating the nonlinear dynamical behavior of magnetic field lines. The solutions of the double-curl Beltrami equation being non-force-free in nature belong to a large class of physically interesting magnetic fields. A particular choice of solution for the double-curl equation in three dimensions leads to a wholly chaotic phase space. In the presence of a strong mean field, the phase space is a combination of closed magnetic surfaces and weakly chaotic regions that slowly tends to global randomness with a decreasing mean field. Stickiness is an important feature of the mixed phase space that describes the dynamical trapping of a chaotic trajectory at the border of regular regions. The global behavior of such trajectories is understood by computing the recurrence length statistics showing a long-tail distribution in contrast to a wholly chaotic phase space that supports a distribution which decays rapidly. Also, the transport characteristics of the field lines are analyzed in connection with their nonlinear dynamical properties.

1.
J. R.
Jokiipi
and
E. N.
Parker
,
Phys. Rev. Lett.
21
,
44
(
1968
).
2.
P.
Pommois
,
G.
Zimbardo
, and
P.
Veltri
,
Phys. Plasmas
5
,
1288
(
1998
)
G.
Zimbardo
,
P.
Veltri
, and
P.
Pommois
,
Phys. Rev. E
61
,
1940
(
2000
).
3.
R.
Lust
and
A.
Schluter
,
Z. Astrophys.
34
,
263
(
1954
).
4.
H. K.
Moffat
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
Cambridge
,
1978
).
5.
A. K.
Ram
,
B.
Dasgupta
,
V.
Krishnamurthy
, and
D.
Mitra
,
Phys. Plasmas
21
,
072309
(
2014
).
6.
7.
8.
G. M.
Zaslavsky
and
M. K.
Tippet
,
Phys. Rev. Lett.
67
,
3251
(
1991
).
9.
N.
Buric
,
A.
Rampioni
,
G.
Turchetti
, and
S.
Vaienti
,
J. Phys. A
36
,
L209
(
2003
).
10.
E. G.
Altmann
,
E. C.
da Silva
, and
I. L.
Caldas
,
Chaos
14
,
975
(
2004
).
11.
E. G.
Altmann
and
H.
Kantz
,
Europhys Lett.
78
,
10008
(
2007
).
12.
C.
Vieira Abud
and
R.
Egydio de Carvalho
,
Phys. Rev. E
88
,
042922
(
2013
).
13.
R. B.
White
,
S.
Benkadda
,
S.
Kassibrakis
, and
G. M.
Zaslavsky
,
Chaos
8
,
757
(
1998
).
14.
R.
Sanchez
and
D. E.
Newman
,
Plasma Phys. Controlled Fusion
57
,
123002
(
2015
).
15.
J. A.
Mier
,
R.
Sanchez
,
L.
García
,
B. A.
Carreras
, and
D. E.
Newman
,
Phys. Rev. Lett.
101
,
165001
(
2008
).
16.
G.
Spizzo
,
R. B.
White
,
S.
Cappello
, and
L.
Marrelli
,
Plasma Phys. Controlled Fusion
51
,
124026
(
2009
).
17.
Z.
Yoshida
and
S. M.
Mahajan
,
J. Math. Phys.
40
,
5080
(
1999
).
18.
S.
Chandrasekhar
and
L.
Woltjer
,
Proc. Natl. Acad. Sci.
U.S.A.
44
,
285
(
1958
).
19.
R.
Bhattacharyya
,
M. S.
Janaki
, and
B.
Dasgupta
,
Phys. Lett. A
291
,
291
(
2001
).
20.
W.
Sonsrettee
,
P.
Subedi
,
D.
Ruffolo
,
W. H.
Matthaeus
,
A. P.
Snodin
,
P.
Wongpan
, and
P.
Chuychai
,
ApJ
798
,
59
(
2015
).
21.
S.
Bourouaine
and
G. G.
Howes
,
J. Plasma Phys.
83
,
905830301
(
2017
).
You do not currently have access to this content.