Evidence of both a latent nonlinear dependence and chaos is presented for U.S. equity factors, or portfolios of individual equities constructed in such a way so as to maintain exposure to some sort of financial risk premium or behavioral anomaly. Factors analyzed are value, size, momentum, long-term reversal, and short-term reversal, with daily data beginning in the early-20th century. The Brock-Dechert-Scheinkman test indicates the existence of a latent nonlinear dependence, and measures of the maximal Lyapunov exponent, correlation dimension, and Kolmogorov entropy all produce results consistent with the hallmarks of chaos, outcomes both novel and inconsistent with the random walk model for security returns.

1.
A.
Abhyankar
,
L. S.
Copeland
, and
W.
Wong
, “
Nonlinear dynamics in real-time equity market indices: Evidence from the United Kingdom
,”
Econ. J.
105
(
431
),
864
880
(
1995
).
2.
A.
Abhyankar
,
L. S.
Copeland
, and
W.
Wong
, “
Uncovering nonlinear structure in real-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100
,”
J. Bus. Econ. Stat.
15
(
1
),
1
14
(
1997
).
3.
C.
Alexander
and
I.
Giblin
, “
Creating order out of chaos
,”
Risk Mag.
7
(
6
),
71
76
(
1994
).
4.
S. S.
Alexander
, “
Price movements in speculative markets: Trends or random walks
,”
Ind. Manage. Rev.
2
(
2
),
7
26
(
1961
).
5.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
(
Springer
,
New York, NY
,
1996
).
6.
P.
Anagnostidis
and
C. J.
Emmanouilides
, “
Nonlinearity in high-frequency stock returns: Evidence from the Athens stock exchange
,”
Physica A
421
(
1
),
473
487
(
2015
).
7.
R. D.
Arnott
,
C. M.
Kelso
,
S.
Kiscadden
, and
R.
Macedo
, “
Forecasting factor returns: An intriguing possibility
,”
J. Portf. Manage.
16
(
1
),
28
35
(
1989
).
8.
“Rebalancing” means to re-calculate the metrics in question (in this case, book-to-market, which requires updated measures of both book value of the firm and market capitalization) and, subsequently, to make purchases and sales of the securities so as to align the weights held of each security with the desired (updated) amount. While the investor would prefer to continuously rebalance, rebalancing incurs transaction costs, and thus the extra profits anticipated from rebalancing must be greater than the expected costs of engaging in the rebalancing. This friction is one of the more important reasons why financial markets are not efficient,56 and the optimal rebalancing frequency is an area of fruitful and ongoing research.
9.
R. D.
Arnott
and
W. A.
Copeland
, “
The business cycle and security selection
,”
Financ. Anal. J.
41
(
2
),
26
32
(
1985
).
10.
C.
Asness
and
A.
Frazzini
, “
The devil in HML’s details
,”
J. Portf. Manage.
39
(
4
),
49
68
(
2013
).
11.
L.
Bachelier
, “
Théorie de la spéculation
,”
Annales Scientifiques de l’École Normale Supérieure
3
(
17
),
21
86
(
1900
). See English translation in Ref. 32, pp. 17–78.
12.
M. Y. V.
Bakara
, “
Nonlinearity and chaos testing of South East Asia countries capital markets: A comparative study from Indonesia, Philippine and Singapore capital market indices
,” in
Proceedings of the 3rd International Conference on Business and Management Research
(
Bali, Indonesia
, August
2008
).
13.
T. G.
Bali
,
N.
Cakici
, and
R. F.
Whitelaw
, “
Maxing out: Stocks as lotteries and the cross-section of expected returns
,”
J. Financ. Econ.
99
(
2
),
427
446
(
2011
).
14.
R. W.
Banz
, “
The relationship between return and market value of common stocks
,”
J. Financ. Econ.
9
(
1
),
3
18
(
1981
).
15.
S.
Basu
, “
Investment performance of common stocks in relation to their price-earnings ratios: A test of the efficient market hypothesis
,”
J. Finance
32
(
3
),
663
682
(
1977
).
16.
J.
Belaire-Franch
and
D.
Contreras
, “
How to compute the BDS test: A software comparison
,”
J. Appl. Econom.
17
(
6
),
691
699
(
2002
).
17.
A.
BenSaïda
, “
Noisy chaos in intraday financial data: Evidence from the American index
,”
Appl. Math. Comput.
226
(
1
),
258
265
(
2014
).
18.
F.
Black
, “
Capital market equilibrium with restricted borrowing
,”
J. Bus.
45
(
3
),
444
455
(
1972
).
19.
F.
Black
, “
Beta and return
,”
J. Portf. Manage.
20
(
1
),
8
18
(
1993
).
20.
F.
Black
,
M. C.
Jensen
, and
M.
Scholes
, “The capital asset pricing model: Some empirical tests,” in Studies in the Theory of Capital Markets edited by M. C. Jensen (Praeger, New York, 1972), pp. 79–121.
21.
F.
Black
and
M.
Scholes
, “
The pricing of options and corporate liabilities
,”
J. Pol. Econ.
81
(
3
),
637
654
(
1973
).
22.
F.
Black
and
M.
Scholes
, “
From theory to a new financial product
,”
J. Finance
29
(
2
),
399
412
(
1974
).
23.
M. E.
Blume
and
I.
Friend
, “
A new look at the capital asset pricing model
,”
J. Finance
28
(
1
),
19
33
(
1973
).
24.
D. T.
Breeden
, “
An intertemporal asset pricing model with stochastic consumption and investment opportunities
,”
J. Financ. Econ.
7
(
3
),
265
296
(
1979
).
25.
D. T.
Breeden
and
R. H.
Litzenberger
, “
Prices of state-contingent claims implicit in options prices
,”
J. Bus.
51
(
4
),
621
651
(
1978
).
26.
W. A.
Brock
,
W. D.
Dechert
,
J. A.
Scheinkman
, and
B.
LeBaron
, “
A test for independence based on the correlation dimension
,”
Econom. Rev.
15
(
3
),
197
235
(
1996
).
27.
W. A.
Brock
,
D. A.
Hsieh
, and
B.
LeBaron
,
Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence
(
MT Press
,
Cambridge
,
1991
).
28.
M. M.
Carhart
, “
On persistence in mutual fund performance
,”
J. Finance
52
(
1
),
57
82
(
1997
).
29.
C. J.
Cellucci
,
A. M.
Albano
, and
P. E.
Rapp
, “
Statistical validation of mutual information calculations: Comparison of alternative numerical algorithms
,”
Phys. Rev. E
71
(
6
),
066208
(
2005
).
30.
F.
Chincoli
and
M.
Guidolin
, “
Linear and nonlinear predictability in investment style factors: Multivariate evidence
,”
J. Asset Manage.
18
(
6
),
476
509
(
2017
).
31.
J. H.
Cochrane
, “
Presidential address: Discount rates
,”
J. Finance
66
(
4
),
1047
1108
(
2011
).
32.
P. H.
Cootner
,
The Random Character of Stock Market Prices
(
MIT Press
,
Cambridge
,
1964
).
33.
A. S.
Da Silva
and
W.
Lee
, “
From risk premia to smart betas: A unified framework
,”
J. Portf. Manage.
44
(
1
),
44
54
(
2017
).
34.
CRSP data are widely used in the financial economics literature and is generally considered one of the largest and most comprehensive databases in the field. It has data for over 26 500 stocks. Work on the database began in 1960 (http://www.crsp.com/).
35.
W. F. M.
De Bondt
and
R.
Thaler
, “
Does the stock market overreact?
,”
J. Finance
40
(
3
),
793
805
(
1985
).
36.
J.-P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Modern Phys.
57
(
3
),
617
656
(
1985
).
37.
E. F.
Fama
,
Foundations of Finance: Portfolio Decisions and Securities Prices
(
Basic Books
,
New York
,
1976
).
38.
E. F.
Fama
, “
Efficient capital markets: II
,”
J. Finance
46
(
5
),
1575
1617
(
1991
).
39.
E. F.
Fama
, “
Multifactor portfolio efficiency and multifactor asset pricing
,”
J. Financ. Quant. Anal.
31
(
4
),
441
465
(
1996
).
40.
E. F.
Fama
and
K. R.
French
, “
The cross-section of expected stock returns
,”
J. Finance
47
(
2
),
427
465
(
1992
).
41.
E. F.
Fama
and
K. R.
French
, “
Common risk factors in the returns on stocks and bonds
,”
J. Financ. Econ.
33
(
1
),
3
56
(
1993
).
42.
E. F.
Fama
and
K. R.
French
, “
The CAPM is wanted, dead or alive
,”
J. Finance
51
(
5
),
1947
1958
(
1996
).
43.
E. F.
Fama
and
R.
Litterman
, “
An experienced view on markets and investing
,”
Financ. Anal. J.
68
(
6
),
15
19
(
2012
).
44.
E. F.
Fama
and
J. D.
MacBeth
, “
Risk, return, and equilibrium: Empirical tests
,”
J. Pol. Econ.
81
(
3
),
607
636
(
1973
).
45.
J. D.
Farmer
and
J. J.
Sidorowich
, “
Exploiting chaos to predict the future and reduce noise
,” in
Evolution, Learning and Cognition
edited by
Y. C.
Lee
(
World Scientific
,
Singapore
,
1988
), pp.
277
330
.
46.
A. M.
Fraser
, “
Information theory and strange attractors
” Ph.D. dissertation (
University of Texas at Austin
,
1989
).
47.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
(
2
),
1134
1140
(
1986
).
48.
A.
Frazzini
and
L. H.
Pedersen
, “
Betting against beta
,”
J. Financ. Econ.
111
(
1
),
1
25
(
2014
).
49.
I.
Friend
and
M. E.
Blume
, “
Measurement of portfolio performance under uncertainty
,”
Am. Econ. Rev.
60
(
4
),
561
575
(
1970
).
50.
M. R.
Gibbons
and
W.
Ferson
, “
Testing asset pricing models with changing expectations and an unobservable market portfolio
,”
J. Financ. Econ.
14
(
2
),
217
236
(
1985
).
51.
M. R.
Gibbons
,
S. A.
Ross
, and
J.
Shanken
, “
A test of the efficiency of a given portfolio
,”
Econometrica
57
(
5
),
1121
1152
(
1989
).
52.
C. W. J.
Granger
and
O.
Morgenstern
,
Predictability of Stock Market Prices
(
Heath Lexington Books
,
Lexington, MA
,
1970
).
53.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
(
5
),
346
349
(
1983
).
54.
P.
Grassberger
and
I.
Procaccia
, “
Estimation of the Kolmogorov entropy from a chaotic signal
,”
Phys. Rev. A
28
(
4
),
2591
2593
(
1983
).
55.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Phys. D Nonlinear Phenom.
9
(
1-2
),
189
208
(
1983
).
56.
S. J.
Grossman
and
J.
Stiglitz
, “
On the impossibility of informationally efficient markets
,”
Am. Econ. Rev.
70
(
3
),
393
408
(
1980
).
57.
R.
Hagtvedt
, “
Stock return dynamics and the CAPM anomalies
,”
Appl. Econ. Lett.
16
,
1593
1596
(
2009
).
58.
C. R.
Harvey
,
Y.
Liu
, and
H.
Zhu
, “
and the cross-section of expected returns
,”
Rev. Financ. Stud.
29
(
1
),
5
68
(
2016
).
59.
C. R.
Harvey
and
A.
Siddique
, “
Conditional skewness in asset pricing tests
,”
J. Finance
55
(
3
),
1263
1296
(
2000
).
60.
P.
Hodges
,
K.
Hogan
,
J. R.
Peterson
and
A.
Ang
, “
Factor timing with cross-sectional and time-series predictors
,”
J. Portf. Manage.
44
(
1
),
30
43
(
2017
).
61.
D. A.
Hsieh
, “
Testing for nonlinear dependence in daily foreign exchange rates
,”
J. Bus.
62
(
3
),
339
368
(
1989
).
62.
D. A.
Hsieh
, “
Chaos and nonlinear dynamics: Application to financial markets
,”
J. Finance
46
(
5
),
1839
1877
(
1991
).
63.
N.
Jegadeesh
, “
Evidence of predictable behavior of security returns
,”
J. Finance
45
(
3
),
881
898
(
1990
).
64.
N.
Jegadeesh
and
S.
Titman
, “
Returns to buying winners and selling losers: Implications for stock market efficiency
,”
J. Finance
48
(
1
),
65
91
(
1993
).
65.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
2004
).
66.
L.
Kanzler
, “
Very fast and correctly sized estimation of the BDS statistic
,” Working paper (
University of Oxford
,
1999
).
67.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
(
6
),
3403
3411
(
1992
).
68.
S.
Kodba
,
M.
Perc
, and
M.
Marhl
, “
Detecting chaos from a time series
,”
Eur. J. Phys.
26
(
1
),
205
215
(
2005
).
69.
A. N.
Kolmogorov
, “
A new metric invariant of transitive dynamical systems and of automorphisms of Lebesgue spaces
,”
Doklady Akademii Nauk SSSR
119
(
5
),
861
864
(
1958
).
70.
A. N.
Kolmogorov
, “
On the entropy per unit of time as a metric invariant of automorphisms
,”
Doklady Akademii Nauk SSSR
124
(
4
),
754
755
(
1959
).
71.
D.
Kugiumtzis
and
A.
Tsimpiris
, “
Measures of analysis of time series (MATS): A MATLAB toolkit for computation of multiple measures on time series data bases
,”
J. Stat. Softw.
33
(
5
),
1
30
(
2010
).
72.
K.
Lin
, “
The ABC’s of BDS
,”
J. Comput. Intell. Finance
5
,
23
26
(
1997
).
73.
J.
Lintner
, “
Security prices, risk, and maximal gains from diversification
,”
J. Finance
20
(
4
),
587
615
(
1965
).
74.
J.
Lintner
, “
The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets
,”
Rev. Econ. Stat.
47
(
1
),
13
37
(
1965
).
75.
B.
Mandelbrot
, “
Forecasts of future prices, unbiased markets, and “Martingale” models
,”
J. Bus.
39
(
1
),
242
255
(
1966
).
76.
B.
Mandelbrot
, “
When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models
,”
Rev. Econ. Stat.
53
(
3
),
225
236
(
1971
).
77.
H.
Markowitz
, “
Portfolio selection
,”
J. Finance
7
(
1
),
77
91
(
1952
).
78.
H.
Markowitz
, “
The optimization of a quadratic function subject to linear constraints
,”
Naval Res. Logist. Q.
3
(
1-2
),
111
133
(
1956
).
79.
H.
Markowitz
,
Portfolio Selection: Efficient Diversification of Investments
(
John Wiley & Sons
,
New York
,
1959
).
80.
E. S.
Mayfield
and
B.
Mizrach
, “
On determining the dimension of real-time stock-price data
,”
J. Bus. Econ. Stat.
10
(
3
),
367
374
(
1992
).
81.
R. D.
McLean
and
J.
Pontiff
, “
Does academic research destroy stock return predictability?
,”
J. Finance
71
(
1
),
5
32
(
2016
).
82.
J.
Meng
,
T.
Zhu
,
X.
Chen
, and
X.
Yin
, “
The nonlinear dynamics characteristics of stock market and its variation
,” in
Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, Paris, France, January 2013
(
Atlantis Press
,
2013
), pp.
450
455
.
83.
R. C.
Merton
, “
An intertemporal capital asset pricing model
,”
Econometrica
41
(
5
),
867
887
(
1973
).
84.
R. C.
Merton
, “
Theory of rational option pricing
,”
Bell J. Econ. Manage.
4
(
1
),
142
144
,
173
174
, and
178
180
(
1973
).
85.
K. L.
Miller
,
H.
Li
,
T. G.
Zhou
, and
D.
Giamouridis
, “
A risk-oriented model for factor timing decisions
,”
J. Portf. Manage.
41
(
3
),
46
58
(
2015
).
86.
R. K.
Mishra
,
S.
Sehgal
, and
N. R.
Bhanumurthy
, “
A search for long-range dependence and chaotic structure in Indian stock market
,”
Rev. Financ. Econ.
20
(
2
),
96
104
(
2011
).
87.
O.
Morgenstern
, “
Qui Numerare Incipit Errare Incipit
,”
Fortune
68
(
4
),
142
(
1963
).
88.
T. J.
Moskowitz
,
Y. H.
Ooi
, and
L. H.
Pedersen
, “
Time series momentum
,”
J. Financ. Econ.
104
(
2
),
228
250
(
2012
).
89.
J.
Mossin
, “
Equilibrium in a capital asset market
,”
Econometrica
34
(
4
),
768
783
(
1966
).
90.
S. F.
Nicholson
, “
Price-earnings ratios
,”
Financ. Anal. J.
16
(
4
),
43
45
(
1960
).
91.
E. E.
Peters
, “
A chaotic attractor for the S&P 500
,”
Financ. Anal. J.
47
(
2
),
55
62
(
1991
).
92.
S. P.
Pratt
, “
Relationship between variability of past returns and levels of future returns for common stocks, 1926-1960
,”
Bus. Valuation Rev.
27
(
2
),
70
78
(
2008
).
93.
J. B.
Ramsey
,
C. L.
Sayers
, and
P.
Rothman
, “
The statistical properties of dimension calculations using small data sets: Some economic applications
,”
Int. Econ. Rev. (Philadelphia)
31
(
4
),
991
1020
(
1990
).
94.
J. B.
Ramsey
and
H.-J.
Yuan
, “
Bias and error bars in dimension calculations and their evaluation in some simple models
,”
Phys. Lett. A
134
(
5
),
287
297
(
1989
).
95.
J. B.
Ramsey
and
H.-J.
Yuan
, “
The statistical properties of dimension calculations using small data sets
,”
Nonlinearity
3
(
1
),
155
176
(
1990
).
96.
R.
Roll
, “
The efficient market model applied to U. S. Treasury bill rates
,” Ph.D. dissertation (
Graduate School of Business, University of Chicago
,
1968
).
97.
R.
Roll
, “
A critique of the asset pricing theory’s tests: Part I: On past and potential testability of the theory
,”
J. Financ. Econ.
4
(
2
),
129
176
(
1977
).
98.
R.
Roll
, “
Ambiguity when performance is measured by the securities market line
,”
J. Finance
33
(
4
),
1051
1069
(
1978
).
99.
M. T.
Rosenstein
,
J. J.
Collins
, and
C.
J
, “
De Luca: A practical method for calculating largest Lyapunov exponents from small data sets
,”
Phys. D
65
(
1-2
),
117
134
(
1993
).
100.
S. A.
Ross
, “
The arbitrage theory of capital asset pricing
,”
J. Econ. Theory
13
(
3
),
341
360
(
1976
).
101.
S. A.
Ross
, “
Return, risk, and arbitrage
,” in
Risk and Return in Finance
edited by
I.
Friend
and
J. L.
Bicksler
(
Ballinger Publishing Company
,
Cambridge
,
1977
), pp.
189
218
.
102.
A. D.
Roy
, “
Safety first and the holding of assets
,”
Econometrica
20
(
3
),
431
449
(
1952
).
103.
D.
Ruelle
, “
Deterministic chaos: The science and the fiction
,”
Proc. R. Soc. Lond. A. Math. Phys. Sci.
427
(
1873
),
241
248
(
1990
).
104.
S.
Samadder
,
K.
Ghosh
, and
T.
Basu
, “
Investigation of nonlinearity and chaos in prime Indian and American stock exchange indices
,”
Hyperion Int. J. Econophys. New Econ.
8
(
1
),
65
82
(
2015
).
105.
P. A.
Samuelson
, “
Proof that properly anticipated prices fluctuate randomly
,”
Ind. Manage. Rev.
6
(
2
),
41
49
(
1965
).
106.
J. A.
Scheinkman
and
B.
LeBaron
, “
Nonlinear dynamics and stock returns
,”
J. Bus.
62
(
3
),
311
337
(
1989
).
107.
G. W.
Schwert
, “
Anomalies and market efficiency
,” in
Handbook of the Economics of Finance, Volume 1B
edited by
G. M.
Constantinides
,
R. M.
Stulz
, and
M.
Harris
(
Elsevier/North-Holland
,
Boston
,
2003
), pp.
937
972
.
108.
A.
Serletis
and
M.
Shintani
, “
No evidence of chaos but some evidence of dependence in the US stock market
,”
Chaos Solitons Fractals
17
(
2-3
),
449
454
(
2003
).
109.
W. F.
Sharpe
, “
Capital asset prices: A theory of market equilibrium under conditions of risk
,”
J. Finance
19
(
3
),
425
442
(
1964
).
110.
M.
Shintani
and
O.
Linton
, “
Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos
,”
J. Econom.
120
(
1
),
1
33
(
2004
).
111.
Y. G.
Sinai
, “
On the concept of entropy in a dynamical system
,”
Proc. Acad. Sci. USSR
124
(
4
),
768
771
(
1959
).
112.
C.
Stam
,
J.
Pijn
, and
W.
Pritchard
, “
Reliable detection of nonlinearity in experimental time series with strong periodic components
,”
Physica D
112
(
3-4
),
361
380
(
1998
).
113.
D.
Stattman
, “
Book values and stock returns
,”
Chicago MBA: Journal of Selected Papers
4
,
25
45
(
1980
).
114.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence
, Lecture Notes in Mathematics, edited by
D. A.
Rand
and
L.-S.
Young
(
Springer-Verlag
,
New York
,
1981
), Vol. 898, pp.
366
381
.
115.
J.
Theiler
, “
Spurious dimension from correlation algorithms applied to limited time-series data
,”
Phys. Rev. A
34
(
3
),
2427
2432
(
1986
).
116.
J.
Tinbergen
, “
The dynamics of share-price formation
,”
Rev. Econ. Stat.
21
(
4
),
153
160
(
1939
).
117.
J. L.
Treynor
, “Toward a theory of market value of risky assets,” Working paper (Massachusetts Institute of Technology, 1962).
118.
J. L.
Treynor
, “
Long-term investing
,”
Financ. Anal. J.
32
(
3
),
56
59
(
1976
).
119.
J.
Vassilicos
,
A.
Demos
, and
F.
Tata
, “
No evidence of chaos but some evidence of multifractals in the foreign exchange and the stock markets
,” in
Applications of Fractals and Chaos: The Shape of Things
edited by
A.
Crilly
,
R.
Earnshaw
, and
H.
Jones
(
Springer-Verlag
,
New York
,
1993
), pp.
249
265
.
120.
H.
Wang
,
G.
Chen
, and
J.
, “
Complex dynamical behaviors of daily data series in stock exchange
,”
Phys. Lett. A
333
(
3-4
),
246
255
(
2004
).
121.
R.
Wang
,
X.
Hui
, and
X.
Zhang
, “
Analysis of multiple structural changes in financial contagion based on the largest lyapunov exponent
,”
Math. Probl. Eng.
2014
,
1
7
(
2014
).
122.
G. P.
Williams
,
Chaos Theory Tamed
(
Joseph Henry Press
,
Washington, DC
,
1997
).
123.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Phys. D Nonlinear Phenom.
16
(
3
),
285
317
(
1985
).
You do not currently have access to this content.