Measure Synchronization (MS) is the generalization of synchrony to Hamiltonian Systems. Partial measure synchronization (PMS) and complete measure synchronization in a system of three nonlinearly coupled one-dimensional oscillators have been investigated for different initial conditions on the basis of numerical computation. The system is governed by the classical SU(2) Yang-Mills-Higgs (YMH) Hamiltonian with three degrees of freedom. Various transitions in the quasiperiodic (QP) region, namely, QP unsynchronized to PMS, PMS to PMS, and PMS to chaos are identified through the average bare energies and interaction energies route maps as the coupling strength is varied. The transition from quasiperiodicity to chaos is seen to be associated with a gradual transition to complete chaotic measure synchronization (CMS) which is followed by chaotic unsynchronized states, the most stable state in this case. The analyses illustrate the dependence on initial conditions. The explanation of the behavior in the QP regime is sought from the power spectral analysis. The existence of PMS is confirmed using the order parameter M (here Mαβ for different combination pairs of oscillators), best suited to identify MS in coupled two-oscillator systems, and this definition is extended to obtain a new order parameter, M3, aiding to distinguish complete MS of three oscillators from other forms of motion. The study of wavelet coefficient spectra sheds new light on the relative phase information of the oscillators in the QP PMS regions, also highlighting the intertwined role played by the various frequency components and their amplitudes as they vary temporally. Furthermore, this technique helps to draw a sharp distinction between CMS and chaotic unsynchronized states. Based on the Continuous Wavelet Transform coefficients of the three oscillators, an order parameter Mwav is defined to indicate the extent of synchronization of the various scales (frequencies) for different coupling strengths in the chaotic regime.

1.
C.
Hugenni
,
Horologium Oscillatorium
(
Apud F. Maguet
,
Paris
,
1673
).
2.
I. M.
Kyprianidis
and
I. N.
Stouboulos
,
Chaos Solitons Fractals
17
,
327
336
(
2003
).
3.
E.
Steur
,
T.
Oguchi
,
C.
van Leeuwen
, and
H.
Nijmeijer
,
Chaos
22
,
043144
(
2012
).
4.
C.
Freitas
,
E.
Macau
, and
A.
Pikovsky
,
Chaos
25
,
043119
(
2015
).
5.
Y.
Liu
,
M.
Sebek
,
F.
Mori
, and
I. Z.
Kiss
,
Chaos
28
,
045104
(
2018
).
6.
A.
Hampton
and
D. H.
Zanette
,
Phys. Rev. Lett.
83
,
2179
(
1999
).
7.
X.
Wang
,
Z.
Ying
, and
G.
Hu
,
Phys. Lett. A
298
,
383
387
(
2002
).
8.
9.
X.
Wang
,
H.
Li
,
K.
Hu
, and
G.
Hu
,
Int. J. Bifurcat. Chaos
12
(
5
),
1141
1148
(
2002
).
10.
X.
Wang
,
M.
Zhan
,
C.-H.
Lai
, and
H.
Gang
,
Phy. Rev. E
67
,
066215
(
2003
).
11.
J.
Tian
,
H.
Qiu
,
Z.
Chen
, and
Y.
Chen
,
Mod. Phys. Lett. B
27
(
05
),
1350036
(
2013
).
12.
L.
Bo
,
C.
Zi-chen
,
Q.
Hai-bo
, and
X.
Xiao-qiang
,
J. China Univ. Posts Telecomm.
20
(
Suppl. 2
),
121
127
(
2013
).
13.
S.
Gupta
,
S.
De
,
M. S.
Janaki
, and
A. N.
Sekar Iyengar
,
Chaos
27
,
113103
(
2017
).
14.
R. A.
Pullen
and
A. R.
Edmonds
,
J. Phys. A Math. Gen.
14
,
L477
L484
(
1981
).
15.
S. G.
Matinyan
and
Y.
Jack Ng
,
J. Phys. A Math. Gen.
36
,
L417
L423
(
2003
).
16.
T. S.
Biró
,
C.
Gong
,
B.
Müller
, and
A.
Trayanov
,
Int. J. Mod. Phys. C
5
,
113
(
1994
).
17.
E. E.
Zotos
,
MESA
3
(
2
),
163
178
(
2012
); arXiv:1209.1708v1 [nlin.CD].
18.
E. E.
Zotos
,
Astron. Astrophys. Trans.
27
(
4
),
625
634
(
2012
). ISSN 1055-6796; arXiv:1303.0476v1 [nlin.CD].
You do not currently have access to this content.