We report the coexistence of synchronized and unsynchronized states in a mutually coupled star network of nearly conservative non-identical oscillators. Generalized synchronization is observed between the central oscillator with the peripherals, and phase synchronization is found among the peripherals in weakly dissipative systems. However, the basin size of the synchronization region decreases as dissipation strength is increased. We have demonstrated these phenomena with the help of Duffing and Lorenz84 oscillators with conservative, nearly conservative, and dissipative properties. The observed results are robust against the network size.

1.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
(
1999
).
2.
W.
Stallings
,
Network and Internetwork Security: Principles and Practice
(
Prentice Hall, Englewood Cliffs
,
1995
), Vol. 1.
3.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
(
2006
).
4.
E.
Thébault
and
C.
Fontaine
, “
Stability of ecological communities and the architecture of mutualistic and trophic networks
,”
Science
329
,
853
(
2010
).
5.
J. M.
Montoya
,
S. L.
Pimm
, and
R. V.
Solé
, “
Ecological networks and their fragility
,”
Nature
442
,
259
(
2006
).
6.
R.
Milo
,
S.
Shen-Orr
,
S.
Itzkovitz
,
N.
Kashtan
,
D.
Chklovskii
, and
U.
Alon
, “
Network motifs: Simple building blocks of complex networks
,”
Science
298
,
824
(
2002
).
7.
R. J.
Williams
and
N. D.
Martinez
, “
Stabilization of chaotic and non-permanent food-web dynamics
,”
Eur. Phys. J. B
38
,
297
(
2004
).
8.
H.
Jeong
,
B.
Tombor
,
R.
Albert
,
Z. N.
Oltvai
, and
A.-L.
Barabási
, “
The large-scale organization of metabolic networks
,”
Nature
407
,
651
(
2000
).
9.
A.
Wagner
and
D. A.
Fell
, “
The small world inside large metabolic networks
,”
Proc. R. Soc. Lond. B Biol. Sci.
268
,
1803
(
2001
).
10.
E.
Davidson
and
M.
Levin
, “
Gene regulatory networks
,”
Proc. Natl. Acad. Sci.
102
,
4935
(
2005
).
11.
E. H.
Davidson
and
D. H.
Erwin
, “
Gene regulatory networks and the evolution of animal body plans
,”
Science
311
,
796
(
2006
).
12.
A.-L.
Barabási
,
R.
Albert
, and
H.
Jeong
, “
Scale-free characteristics of random networks: The topology of the world-wide web
,”
Physica A
281
,
69
(
2000
).
13.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Internet: Diameter of the world-wide web
,”
Nature
401
,
130
(
1999
).
14.
P.
Crucitti
,
V.
Latora
, and
M.
Marchiori
, “
Model for cascading failures in complex networks
,”
Phys. Rev. E
69
,
045104
(
2004
).
15.
A. E.
Motter
and
Y.-C.
Lai
, “
Cascade-based attacks on complex networks
,”
Phys. Rev. E
66
,
065102
(
2002
).
16.
M. E.
Newman
, “
The structure of scientific collaboration networks
,”
Proc. Natl. Acad. Sci.
98
,
404
(
2001
).
17.
M. E.
Newman
, “
Scientific collaboration networks. I. network construction and fundamental results
,”
Phys. Rev. E
64
,
016131
(
2001
).
18.
E. M.
Jin
,
M.
Girvan
, and
M. E.
Newman
, “
Structure of growing social networks
,”
Phys. Rev. E
64
,
046132
(
2001
).
19.
M.
Thelwall
, “
Social networks, gender, and friending: An analysis of myspace member profiles
,”
J. Assoc. Inf. Sci. Technol.
59
,
1321
(
2008
) r44.
20.
K.
Stouffer
and
J.
Falco
,
Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems Security
(
National Institute of Standards and Technology
,
2006
).
21.
T.
Erskine
,
K. W.
Sonberg
, and
L.
Rudisill
, “
Method and system for providing supervisory control over wireless phone usage
,” U.S. patent 7,197,321 (
2007
).
22.
S. S.
Iyengar
and
R. R.
Brooks
,
Distributed Sensor Networks
(
CRC Press
,
2004
).
23.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
(
2001
).
24.
M.
Rubinov
and
O.
Sporns
, “
Complex network measures of brain connectivity: Uses and interpretations
,”
Neuroimage
52
,
1059
(
2010
).
25.
R.
Guimerà
,
A.
Díaz-Guilera
,
F.
Vega-Redondo
,
A.
Cabrales
, and
A.
Arenas
, “
Optimal network topologies for local search with congestion
,”
Phys. Rev. Lett.
89
,
248701
(
2002
).
26.
M.
Lakshmanan
and
K.
Murali
,
Chaos in Nonlinear Oscillators: Controlling and Synchronization
(
World scientific
,
1996
), Vol. 13.
27.
L.
Pecora
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
(
1990
).
28.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
(
1996
).
29.
L.
Kocarev
and
U.
Parlitz
, “
General approach for chaotic synchronization with applications to communication
,”
Phys. Rev. Lett.
74
,
5028
(
1995
).
30.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
From phase to lag synchronization in coupled chaotic oscillators
,”
Phys. Rev. Lett.
78
,
4193
(
1997
).
31.
S.
Boccaletti
and
D.
Valladares
, “
Characterization of intermittent lag synchronization
,”
Phys. Rev. E
62
,
7497
(
2000
).
32.
D. J.
DeShazer
,
B. P.
Tighe
,
J.
Kurths
, and
R.
Roy
, “
Experimental observation of noise-induced synchronization of bursting dynamical systems
,”
IEEE J. Sel. Top. Quantum Electron.
10
,
906
(
2004
).
33.
H.
Fujisaka
, “
Stability theory of synchronized motion in coupled-oscillator systems
,”
Prog. Theor. Phys.
69
,
32
(
1983
).
34.
N. F.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
H. D.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
(
1995
).
35.
H. D.
Abarbanel
,
N. F.
Rulkov
, and
M. M.
Sushchik
, “
Generalized synchronization of chaos: The auxiliary system approach
,”
Phys. Rev. E
53
,
4528
(
1996
).
36.
O. I.
Moskalenko
,
A. A.
Koronovskii
,
A. E.
Hramov
, and
S.
Boccaletti
, “
Generalised synchronisation in mutually coupled oscillators and complex networks
,”
Phys. Rev. E
86
,
036216
(
2012
).
37.
O. I.
Moskalenko
,
A. A.
Koronovskii
, and
A. E.
Hramov
, “
Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks
,”
Phys. Rev. E
87
,
064901
(
2013
).
38.
C. W.
Wu
,
Synchronization in Complex Networks of Nonlinear Dynamical Systems
(
World Scientific
,
2007
).
39.
X.
Liu
and
T.
Chen
, “
Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling
,”
Phys. A Stat. Mech. Appl.
381
,
82
(
2007
).
40.
J.
Zhou
,
J.
Lu
, and
J.
Lu
, “
Adaptive synchronization of an uncertain complex dynamical network
,”
IEEE Trans. Automat. Contr.
51
,
652
(
2006
).
41.
V.
Kohar
,
S.
Kia
,
B.
Kia
,
J. F.
Lindner
, and
W. L.
Ditto
, “
Role of network topology in noise reduction using coupled dynamics
,”
Nonlinear Dyn.
84
,
1805
(
2016
).
42.
V.
Kohar
and
S.
Sinha
, “
Emergence of epidemics in rapidly varying networks
,”
Chaos Solitons Fractals
54
,
127
(
2013
).
43.
N.
Kashtan
and
U.
Alon
, “
Spontaneous evolution of modularity and network motifs
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
13773
(
2005
).
44.
A.-L.
Barabási
,
R.
Albert
, and
H.
Jeong
, “
Scale-free characteristics of random networks: The topology of the world-wide web
,”
Physica A
281
,
69
(
2000
).
45.
J.-F.
Rual
,
K.
Venkatesan
,
T.
Hao
,
T.
Hirozane-Kishikawa
,
A.
Dricot
,
N.
Li
,
G. F.
Berriz
,
F. D.
Gibbons
,
M.
Dreze
,
N.
Ayivi-Guedehoussou
et al., “
Towards a proteome-scale map of the human protein–protein interaction network
,”
Nature
437
,
1173
(
2005
).
46.
J.
Lim
,
T.
Hao
,
C.
Shaw
,
A. J.
Patel
,
G.
Szabó
,
J.-F.
Rual
,
C. J.
Fisk
,
N.
Li
,
A.
Smolyar
,
D. E.
Hill
et al., “
A protein–protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration
,”
Cell
125
,
801
(
2006
).
47.
J. E. M.
Rivera
,
M. G.
Naso
, and
F. M.
Vegni
, “
Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory
,”
J. Math. Anal. Appl.
286
,
692
(
2003
).
48.
J.
Laskar
and
P.
Robutel
, “
High order symplectic integrators for perturbed hamiltonian systems
,”
Celest. Mech. Dyn. Astr.
80
,
39
(
2001
).
49.
K.
Case
and
A.
Roos
, “
Perturbed hamiltonian systems
,”
J. Math. Phys.
22
,
2824
(
1981
).
50.
S.
Sabarathinam
and
K.
Thamilmaran
, “
Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators
,”
Chaos Solitons Fractals
73
,
129
(
2015
).
51.
J.
Danby
,
Fundamentals of Celestial Mechanics
, 2nd ed. (
Willman-Bell
,
Richmond
,
1992
).
52.
J.
Moser
,
Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics
(
Princeton University Press
,
2001
), Vol. 1.
53.
A.
Muronga
, “
Causal theories of dissipative relativistic fluid dynamics for nuclear collisions
,”
Phys. Rev. C
69
,
034903
(
2004
).
54.
H.
Tennekes
and
J.
Woods
, “
Coalescence in a weakly turbulent cloud
,”
Q. J. R. Meteorol. Soc.
99
,
758
(
1973
).
55.
P.
Espanol
and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
,
191
(
1995
).
56.
A.
King
,
W.
Schaffer
,
C.
Gordon
,
J.
Treat
, and
M.
Kot
, “
Weakly dissipative predator-prey systems
,”
Bull. Math. Biol.
58
,
835
(
1996
).
57.
W. F.
Bottke
,
D.
Vokrouhlickỳ
,
M.
Broz
,
D.
Nesvornỳ
, and
A.
Morbidelli
, “
Dynamical spreading of asteroid families by the yarkovsky effect
,”
Science
294
,
1693
(
2001
).
58.
S. R.
Chesley
,
S. J.
Ostro
,
D.
Vokrouhlickỳ
,
D.
Čapek
,
J. D.
Giorgini
,
M. C.
Nolan
,
J.-L.
Margot
,
A. A.
Hine
,
L. A.
Benner
, and
A. B.
Chamberlin
, “
Direct detection of the yarkovsky effect by radar ranging to asteroid 6489 golevka
,”
Science
302
,
1739
(
2003
).
59.
I.
Kovacic
and
M. J.
Brennan
,
The Duffing Equation: Nonlinear Oscillators and their Behaviour
(
John Wiley & Sons
,
2011
).
60.
Z.
Zheng
,
X.
Wang
, and
M. C.
Cross
, “
Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators
,”
Phys. Rev. E
65
,
056211
(
2002
).
61.
S.
Guan
,
X.
Wang
,
X.
Gong
,
K.
Li
, and
C.-H.
Lai
, “
The development of generalized synchronization on complex networks
,”
Chaos: Interdiscip. J. Nonlinear Sci.
19
,
013130
(
2009
).
62.
Y.
Tang
,
G.
Bu
, and
J.
Yi
, “
Analysis and lessons of the blackout in Indian power grid on July 30 and 31, 2012
,” in
Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society of Electrical Engineering)
(
Chinese Society for Electrical Engineering
,
2012
), Vol. 32, pp.
167
.
63.
I.
Sendina-Nadal
and
C.
Letellier
, “
Synchronizability of nonidentical weakly dissipative systems
,”
Chaos: Interdiscip. J. Nonlinear Sci.
27
,
103118
(
2017
).
64.
A.
Prasad
,
L. D.
Iasemidis
,
S.
Sabesan
, and
K.
Tsakalis
, “
Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators
,”
Pramana
64
,
513
(
2005
).
65.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
66.
A.
Gehani
,
T.
LaBean
, and
J.
Reif
, “
Dna-based cryptography
,” in
Aspects of Molecular Computing
(
Springer
,
2003
), pp.
167
.
67.
L. D.
Iasemidis
,
D.-S.
Shiau
,
W.
Chaovalitwongse
,
J. C.
Sackellares
,
P. M.
Pardalos
,
J. C.
Principe
,
P. R.
Carney
,
A.
Prasad
,
B.
Veeramani
, and
K.
Tsakalis
, “
Adaptive epileptic seizure prediction system
,”
IEEE Trans. Biomed. Eng.
50
,
616
(
2003
).
68.
L.
Iasemidis
,
D.-S.
Shiau
,
P.
Pardalos
,
W.
Chaovalitwongse
,
K.
Narayanan
,
A.
Prasad
,
K.
Tsakalis
,
P.
Carney
, and
J.
Sackellares
, “
Long-term prospective on-line real-time seizure prediction
,”
Clin. Neurophysiol.
116
,
532
(
2005
).
69.
Y.-h.
Yin
,
J.-b.
Guo
,
J.-j.
Zhao
, and
G.-q.
BU
, “
Preliminary analysis of large scale blackout in interconnected north america power grid on august 14 and lessons to be drawn
,”
Power Syst. Technol.
10
,
001
(
2003
), available at http://en.cnki.com.cn/Article_en/CJFDTOTAL-DWJS200310001.htm
70.
C. J.
Hawker
,
J. M.
Frechet
,
R. B.
Grubbs
, and
J.
Dao
, “
Preparation of hyperbranched and star polymers by a “living”, self-condensing free radical polymerization
,”
J. Am. Chem. Soc.
117
,
10763
(
1995
).
71.
J.
Roovers
,
L. L.
Zhou
,
P. M.
Toporowski
,
M.
van der Zwan
,
H.
Iatrou
, and
N.
Hadjichristidis
, “
Regular star polymers with 64 and 128 arms. models for polymeric micelles
,”
Macromolecules
26
,
4324
(
1993
).
You do not currently have access to this content.