q-deformations of functions and distributions have been used in the literature to explain several experimental observations. In this work, we study the dynamics of the Tinkerbell map under q-deformations. The system exhibits a rich variety of dynamical behavior as q varies, including occurrences of interior crises, paired cascades, simultaneous occurrence of Neimark-Sacker and reverse Neimark-Sacker bifurcations, and co-existence of attractors and multistability. Numerical analysis reveals the existence of 3 limit cycles occurring simultaneously in a certain parameter regime. An appropriate choice of initial conditions enables one to choose a desired attractor for the system among other co-existing ones, thus switching the system between different dynamical states. We demonstrate the possibility of secure encryption and decryption of messages with the q-deformed Tinkerbell map. The system’s sensitivity to the initial conditions and to the deformation parameter makes the cryptic message secure, and decrypting the original message difficult. We propose the use of the q-deformed map as a novel method for transmission of messages securely.

1.
R.
Matthew
, “
On the derivation of a “chaotic” encryption algorithm
,”
Cryptologia
8
,
29
42
(
1989
).
2.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
, ”
Phys. Rev. Lett.
64
,
821
824
(
1990
).
3.
A. V.
Oppenheim
,
G. W.
Wornell
,
S. H.
Isabelle
, and
K. M.
Cuomo
, “
Signal processing in the context of chaotic signals
,”
Proc. IEEE ICASSP-92
4
,
117
120
(
1992
).
4.
Lj.
Kocarev
,
K. S.
Halle
,
K.
Eckert
,
L. O.
Chua
, and
U.
Parlitz
, “
Experimental demonstration of secure communications via chaotic synchronization
,”
Int. J. Bifur. Chaos
2
,
709
713
(
1992
).
5.
M. S.
Baptista
, “
Cryptography with chaos
,”
Phys. Lett. A
240
,
50
54
(
1998
).
6.
S.
Banerjee
and
J.
Kurths
, “
Chaos and Cryptography: A new dimension in secure communications
,”
Eur. Phys. J. ST
223
,
1441
1445
(
2014
).
7.
L.
Euler
,
Introduction in Analysis Infinitorum
(
Bousquet
,
Lausanne
,
1748
).
8.
E.
Heine
,
Handbuch der Kugelfunktionen
(
Reimer
,
Berlin
,
1878
). Vol. 1, reprinted by Physica-Verlag, Wurzburg (1961).
9.
F. H.
Jackson
, “
A generalization of the functions Γ(n) and xn
,”
Proc. R. Soc. London
74
,
64
72
(
1904
).
10.
F. H.
Jackson
, “
On q-functions and a certain difference operator
,”
Trans. R. Soc. Edinburgh
46
,
253
281
(
1909
).
11.
T.
Geisel
and
S.
Thomae
, “
Anomalous diffusion in intermittent chaotic systems
, ”
Phys. Rev. Lett.
52
,
1936
(
1984
).
12.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
,
479
487
(
1988
).
13.
C.
Beck
,
E. G. D.
Cohen
, and
S.
Rizzo
, “
Atmospheric turbulence and superstatistics
,”
Europhys. News
36
,
189
191
(
2005
).
14.
S.
Abe
,
U.
Tirnakli
, and
P. A.
Varotsos
, “
Complexity of seismicity and nonextensive statistics
,”
Europhys. News
36
,
206
208
(
2005
).
15.
A. R.
Plastino
and
A.
Plastino
, “
Stellar polytropes and Tsallis entropy
,”
Phys. Lett. A
174
,
384
386
(
1993
).
16.
G.
Kaniadakis
,
A.
Lavagno
, and
P.
Quarati
, “
Generalized statistics and solar neutrinos
,”
Phys. Lett. B
369
,
308
312
(
1996
).
17.
E.
Lutz
, “
Anomalous diffusion and Tsallis statistics in an optical lattice
,”
Phys. Rev. A
67
,
051402(R)
(
2003
).
18.
P.
Douglas
,
S.
Bergamini
, and
F.
Renzoni
, “
Tunable Tsallis distributions in dissipative optical lattices
,”
Phys. Rev. Lett.
96
,
110601
(
2006
).
19.
A. M.
Edwards
, et al., “
Revisiting Lèvy flight search patterns of wandering albatrosses, bumblebees and deer
,”
Nature
449
,
1044
1048
(
2007
).
20.
F. A.
Tamarit
,
C.
Anteneodo
,“
Relaxation and aging in a long-range interacting system
,”
Europhys. News
36
,
194
197
(
2005
).
21.
J. P.
Boon
and
C.
Tsallis
, “
Special issue overview Nonextensive statistical mechanics: new trends, new perspectives
,”
Europhys. News
36
,
185
186
(
2005
).
22.
H. G. E.
Hentschel
and
I.
Procaccia
, “
The infinite number of generalized dimensions of fractals and strange attractors
,”
Phys. D
8
,
435
444
(
1983
).
23.
R.
Jaganathan
and
S.
Sinha
, “
A q-deformed nonlinear map
,”
Phys. Lett. A
338
,
277
287
(
2005
).
24.
V.
Patidar
and
K. K.
Sud
, “
A comparative study on the co-existing attractors in the Gaussian map and its q-deformed version
,”
Commun. Nonlinear Sci. Numer. Simul.
14
,
827
838
(
2009
).
25.
V.
Patidar
,
G.
Purohit
, and
K. K.
Sud
, “
Dynamical Behavior of q-deformed Henon map
,”
Int. J. Bifur. Chaos
21
,
1349
1356
(
2011
).
26.
S. V.
Iyengar
,
J.
Balakrishnan
, and
J.
Kurths
, “
Impact of climate change on Larch Budmoth cyclic outbreaks
,”
Sci. Rep.
6
,
27845
(
2016
).
27.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
(
Springer-Verlag
,
Berlin
,
1996
).
28.
H. E.
Nusse
and
J. A.
Yorke
,
Dynamics: Numerical Explorations
(
Springer
,
NY
,
1997
).
29.
R. L.
Davidchack
,
Y. C.
Lai
,
A.
Klebanoff
, and
E. M.
Bollt
, “
Towards complete detection of unstable periodic orbits in chaotic systems
,”
Phys. Lett. A
287
,
99
104
(
2001
).
30.
P. E.
Mcsharry
and
P. R. C.
Ruffino
, “
Asymptotic angular stability in non-linear systems: Rotation numbers and winding numbers
,”
Dyn. Syst.
18
,
191
200
(
2003
).
31.
Six Lectures on Dynamical Systems, edited by B. Aulbach and F. Colonius (World Scientific, Singapore, 1996).
32.
A.
Goldsztein
,
W.
Hayes
, and
P.
Collins
, “
Tinkerbell is chaotic
,”
SIAM J. Appl. Dyn. Syst.
10
,
1480
1501
(
2011
).
33.
S.
Yuan
,
T.
Jiang
, and
Z.
Jing
, “
Bifurcation and chaos in the Tinkerbell map
,”
Int. J. Bifur. Chaos
21
,
3137
3156
(
2011
).
34.
J. C.
Sprott
and
A.
Xiong
, “
Classifying and quantifying basins of attraction
,”
Chaos
25
,
083101
(
2015
).
35.
L. S.
Coelho
and
V. C.
Marianai
, “
Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning
,”
Comput. Math. Appl.
64
,
2371
2382
(
2012
).
36.
B.
Stoyanov
and
K.
Kordov
, “
Novel secure pseudo-random number generation scheme based on two Tinkerbell maps
,”
Adv. Stud. Theor. Phys.
9
,
411
421
(
2015
).
37.
B.
Stoyanov
, “
Pseudo-random bit generation algorithm based on chebyshev polynomial and Tinkerbell map
,”
Appl. Math. Sci.
8
,
6205
6210
(
2014
).
38.
V.
Aboites
and
M.
Wilson
, “
Tinkerbell chaos in a ring phase-conjugated resonator
,”
Int. J. Pure Appl. Math.
54
,
429
435
(
2009
).
39.
E.
Sander
and
J. A.
Yorke
, “
Connecting period-doubling cascades to chaos
,”
Int. J. Bifur. Chaos
22
,
1250022
(
2012
).
40.
E.
Liz
and
A.
Ruiz-Herrera
, “
The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting
,”
J. Math. Biol.
65
,
997
1016
(
2012
).
41.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors and transient chaos
,”
Phys. D
7
,
181
200
(
1983
).
42.
C.
Li
and
G.
Chen
, “
Estimating the Lyapunov exponents of discrete systems
,”
Chaos
14
,
343
346
(
2004
).
43.
C.
Li
, “
On super-chaotifying discrete dynamical systems
,”
Chaos, Solitons Fractals
21
,
855
861
(
2004
).
44.
W.
Wong
,
L.
Lee
, and
K.
Wong
, “
A modified chaotic cryptographic method
,”
Comp. Phys. Commun.
138
,
234
236
(
2001
).
45.
K. W.
Wong
, “
A fast chaotic cryptographic scheme with dynamic look-up table
,”
Phys. Lett. A
298
,
238
242
(
2002
).
You do not currently have access to this content.