A mathematical model of a network of nearest neighbor gap-junction coupled neurons has been used to examine the impact of neuronal heterogeneity on the networks’ activity during increasing coupling strength. Heterogeneity has been introduced by Huber-Braun model neurons with randomization of the temperature as a scaling factor. This leads to neurons of an enormous diversity of impulse pattern, including burst discharges, chaotic activity, and two different types of tonic firing—all of them experimentally observed in the peripheral as well as central nervous system. When the network is composed of all these types of neurons, randomly selected, a particular phenomenon can be observed. At a certain coupling strength, the network goes into a completely silent state. Examination of voltage traces and inter-spike intervals of individual neurons suggests that all neurons, irrespective of their original pattern, go through a well-known bifurcation scenario, resembling those of single neurons especially on external current injection. All the originally spontaneously firing neurons can achieve constant membrane potentials at which all intrinsic and gap-junction currents are balanced. With limited diversity, i.e., taking out neurons of specific patterns from the lower and upper temperature range, spontaneous firing can be reinstalled with further increasing coupling strength, especially when the tonic firing regimes are missing. Reinstalled firing develops from slowly increasing subthreshold oscillations leading to tonic firing activity with already fairly well synchronized action potentials, while the subthreshold potentials can still be significantly different. Full in phase synchronization is not achieved. Additional studies are needed elucidating the underlying mechanisms and the conditions under which such particular transitions can appear.

1.
A.
Neiman
,
X.
Pei
,
D.
Russel
 et al,
Phys. Rev. Lett.
82
,
660
(
1999
).
2.
C. M.
Gray
,
P.
Konig
,
A. K.
Engel
 et al,
Nature
338
,
334
(
1989
).
3.
A. K.
Engel
and
W.
Singer
,
Trends Cogn. Sci.
5
,
16
(
2001
).
4.
F.
Lopes da Silva
,
W.
Blanes
,
S. N.
Kalitzin
 et al,
Epilepsia
44
(
Suppl 12
),
72
(
2003
).
5.
M.
Rosenblum
and
A.
Pikovsky
,
Phys. Rev. E
70
,
041904
(
2004
).
6.
P. J.
Uhlhaas
,
G.
Pipa
,
B.
Lima
 et al,
Front. Integr. Neurosci.
3
,
17
(
2009
).
7.
C.
Finke
,
J.
Vollmer
,
S.
Postnova
 et al,
Math. Biosci.
214
,
109
(
2008
).
8.
H. A.
Braun
,
H.
Wissing
,
K.
Schafer
 et al,
Nature
367
,
270
(
1994
).
9.
H. A.
Braun
, in
Homo Neurobiologicus—Ist der Mensch nur sein Gehirn
, edited by
S.
Höfling
and
F.
Tretter
(
Hanns Seidel Stiftung, Argumente und Materialen zum Zeitgeschehen München
,
2013
), Vol. 87, p. 59.
10.
A.
Tchaptchet
,
W.
Jin
, and
H. A.
Braun
, in
Advances in Cognitive Neurodynamics
, edited by
R.
Wang
and
X.
Pan
(
Springer
,
Singapore
,
2015
), Vol. 5, p. 681.
11.
H. A.
Braun
, in
Zufall in der belebten Natur
, edited by
U.
Herkenrath
(
Verlag Roman Kovar
,
Hennef
,
2018
), p. 109.
12.
M. T.
Huber
and
H. A.
Braun
,
Phys. Rev. E
73
,
041929
(
2006
).
13.
M. D.
McDonnell
and
L. M.
Ward
,
Nat. Rev. Neurosci.
12
,
415
(
2011
).
14.
E.
Marder
and
A. L.
Taylor
,
Nat. Neurosci.
14
,
133
(
2011
).
15.
P. S.
Katz
and
W. N.
Frost
,
Trends Neurosci.
19
,
54
(
1996
).
16.
R.
Llinas
,
Cold Spring Harb. Symp. Quant. Biol.
55
,
933
(
1990
).
17.
S.
Postnova
,
K.
Voigt
, and
H. A.
Braun
,
J. Biol. Phys.
33
,
129
(
2007
).
18.
S.
Postnova
,
C.
Finke
,
W.
Jin
 et al,
J. Physiol. Paris
104
,
176
(
2010
).
19.
A.
Shaffer
,
A. L.
Harris
,
R.
Follmann
 et al,
Phys. Rev. E
94
,
042301
(
2016
).
20.
A.
Shaffer
,
R.
Follmann
,
A. L.
Harris
 et al,
Eur. Phys. J. Spec. Top.
226
,
1939
(
2017
).
21.
H. A.
Braun
,
S.
Postnova
,
B. T.
Wollweber
 et al, in
Biosimulation in Drug Development
, edited by
M.
Bertau
,
E.
Mosekilde
, and
H.
Westerhoff
(
Wiley –VCH
,
2007
), p. 197.
22.
S.
Postnova
,
E.
Rosa
, Jr.
, and
H. A.
Braun
,
Pharmacopsychiatry
43
(
Suppl. 1)
,
S82
(
2010
).
23.
S.
Postnova
,
C.
Finke
,
M. T.
Huber
 et al, in
Biosimulation in Biomedical Research, Health Care and Drug Development
, edited by
E.
Mosekilde
,
O.
Sosnovtseva
and
A.
Rostami-Hodjegan
(
Springer
,
Wien
,
2011
), p. 93.
24.
A.
Tchaptchet
,
S.
Postnova
,
C.
Finke
 et al,
Brain Res.
1536
,
159
(
2013
).
25.
H. A.
Braun
,
K.
Schaefer
,
K.
Voigt
 et al,
Nova Acta Leopold.
88
,
293
(
2003
).
26.
H. A.
Braun
,
K.
Voigt
, and
M. T.
Huber
,
Biosystems
71
,
39
(
2003
).
27.
S.
Postnova
,
K.
Voigt
, and
H. A.
Braun
, in
Advances in Cognitive Neurodynamics
, edited by
R.
Wang
and
F.
Gu
(
Springer
,
Heidelberg
,
2011
), Vol. 2, p. 563.
28.
S.
Postnova
,
B.
Wollweber
,
K.
Voigt
 et al,
Biosystems
89
,
135
(
2007
).
29.
H. A.
Braun
,
M. T.
Huber
,
N.
Anthes
 et al,
Neurocomputing
32
,
51
(
2000
).
30.
M.
Sainz-Trapaga
,
C.
Masoller
,
H. A.
Braun
 et al,
Phys. Rev. E
70
,
031904
(
2004
).
31.
O. V.
Sosnovtseva
,
S.
Postnova
,
E.
Mosekilde
 et al,
Fluct. Noise Lett.
4
,
L521
(
2004
).
32.
P.
Arhem
,
H. A.
Braun
,
M. T.
Huber
 et al, in
Micro-Meso-Macro: Addressing Complex Systems Couplings
, edited by
H.
Liljenstrom
and
U.
Svedin
(
World Scientific Publishing
,
London
,
2005
), p. 37.
33.
U.
Feudel
,
A.
Neiman
,
X.
Pei
 et al,
Chaos
10
,
231
(
2000
).
34.
W.
Braun
,
B.
Eckhardt
,
H. A.
Braun
, and
M.
Huber
,
Phys. Rev. E
62
,
6352
(
2000
).
35.
C.
Finke
,
S.
Postnova
,
E.
Rosa
, Jr.
 et al,
Eur. Phys. J. Spec. Top.
187
,
199
(
2010
).
36.
C.
Finke
,
J. A.
Freund
,
E.
Rosa
, Jr.
 et al,
Chaos
20
,
045107
(
2010
).
37.
C.
Finke
,
J. A.
Freund
,
E.
Rosa
, Jr.
 et al,
Chaos
21
,
047510
(
2011
).
38.
H.
Bade
,
H. A.
Braun
,
H.
Hensel
 et al,
J. Physiol.
284
,
83P
(
1978
).
39.
H. A.
Braun
,
J.
Schwabedal
,
M.
Dewald
 et al,
Chaos
21
,
047509
(
2011
).
40.
P.
Orio
,
R.
Madrid
,
E.
de la Pena
 et al,
J. Physiol.
587
,
1961
(
2009
).
41.
M.
Beuler
,
A.
Tchaptchet
,
W.
Bonath
 et al, in
Artificial Neural Networks and Machine Learning
, edited by
A. E. P.
Villa
,
W.
Duch
,
P.
Edi
,
F.
Masulli
, and
G.
Palm
(
Springer
,
Berlin
,
2012
), p. 97.
42.
H. A.
Braun
,
M. T.
Huber
,
N.
Anthes
 et al,
Biosystems
62
,
99
(
2001
).
43.
H. A.
Braun
,
K.
Voigt
,
J. C.
Krieg
 et al,
Fluct. Noise Lett.
4
,
L207
(
2004
).
44.
M. T.
Huber
,
H. A.
Braun
, and
J. C.
Krieg
,
Biol. Psychiatry
46
,
256
(
1999
).
45.
M. T.
Huber
,
H. A.
Braun
, and
J. C.
Krieg
,
Biol. Psychiatry
47
,
634
(
2000
).
46.
M. T.
Huber
,
H. A.
Braun
, and
J. C.
Krieg
,
Neuropsychopharmacology
28
(
Suppl 1
),
S13
(
2003
).
47.
M. T.
Huber
,
J. C.
Krieg
, and
H. A.
Braun
,
Chaos Solitons Fractals
11
,
1923
(
2000
).
48.
A.
Iggo
and
D. W.
Young
,
The Somatosensory System
, edited by
H. H.
Kornhuber
(
Georg Thieme Publishers
,
Stuttgart
,
1975
), Vol. 5, pp. 5–25.
49.
M. T.
Huber
,
H. A.
Braun
, and
J. C.
Krieg
,
Int. J. Bifurcat. Chaos
14
,
635
(
2004
).
50.
H. A.
Braun
,
H.
Bade
, and
H.
Hensel
,
Pflugers Arch.
386
,
1
(
1980
).
51.
K.
Schafer
,
H. A.
Braun
, and
L.
Kurten
,
Pflugers Arch.
412
,
188
(
1988
).
52.
K.
Schafer
,
H. A.
Braun
,
R. C.
Peters
 et al,
Pflugers Arch.
429
,
378
(
1995
).
53.
M.
Dewald
,
H. A.
Braun
,
M. T.
Huber
 et al,
Pflugers Arch.
444
,
117
(
2002
).
54.
A.
Alonso
and
R. R.
Llinas
,
Nature
342
,
175
(
1989
).
55.
R.
Klink
and
A.
Alonso
,
J. Neurophysiol.
70
,
144
(
1993
).
56.
Y.
Gutfreund
,
Y.
yarom
, and
I.
Segev
,
J. Physiol.
483
(
Pt 3
),
621
(
1995
).
57.
D.
Pare
,
H. C.
Pape
, and
J.
Dong
,
J. Neurophysiol.
74
,
1179
(
1995
).
58.
A.
Tchaptchet
and
H. A.
Braun
, in
International Neural Coding Workshop
, edited by
M.
Nawrot
,
P.
Kloppenburg
,
M.
Deger
, and
A.
Büschges
(
University of Cologne
,
Cologne
,
2016
).
59.
A.
Tchaptchet
and
H. A.
Braun
, in
Artificial Neural Networks and Machine Learning
, edited by
A.
Lintas
,
S.
Rovetta
,
P. F. M. J.
Verschure
, and
A. E. P.
Villa
(
Springer
,
Alghero
,
2017
), Vol. 2.
60.
A.
Tchaptchet
,
Dissertation am Physiologischen Institut
(
Philipps-Universität
,
Marburg
,
2018
).
61.
T. R.
Chay
,
Y. S.
Fan
, and
Y. S.
Lee
,
Int. J. Bifurcat. Chaos
5
,
595
(
1995
).
62.
P.
Orio
,
A.
Parra
,
R.
Madrid
 et al,
J. Neurophysiol.
108
,
3009
(
2012
).
63.
R. E.
Plant
,
J. Math. Biol.
11
,
15
(
1981
).
64.
A.
Longtin
and
K.
Hinzer
,
Neural Comput.
8
,
215
(
1996
).
65.
P.
Roper
,
P. C.
Bressloff
, and
A.
Longtin
,
Neural Comput.
12
,
1067
(
2000
).
66.
M. T.
Huber
,
J. C.
Krieg
,
M.
Dewald
 et al,
Chaos Solitons Fractals
11
,
1895
(
2000
).
67.
M. T.
Huber
,
H. A.
Braun
,
K.
Voigt
 et al, in
Computational Neuroscience: Trends in Research
, edited by
J.
Bower
(
Plenum Press
,
New York
,
1998
), p. 197.
68.
R.
Klink
and
A.
Alonso
,
J. Neurophysiol.
77
,
1829
(
1997
).
69.
R.
Klink
and
A.
Alonso
,
J. Neurophysiol.
77
,
1813
(
1997
).
71.
L.
Prado Tde
,
S. R.
Lopes
,
C. A.
Batista
 et al,
Phys. Rev. E
90
,
032818
(
2014
).
72.
C.
Zhou
and
J.
Kurths
,
Chaos
13
,
401
(
2003
).
73.
M.
Patriarca
,
S.
Postnova
,
H. A.
Braun
 et al,
PLoS Comput. Biol.
8
,
e1002650
(
2012
).
74.
C. J.
Tessone
,
C. R.
Mirasso
,
R.
Toral
 et al,
Phys. Rev. Lett.
97
,
194101
(
2006
).
You do not currently have access to this content.