Computational neuroscience operates on models based on several important paradigms. Among them is the assumption that coupling in neural ensembles is provided by chemical or electrical synapses. This assumption works well under normal conditions. However, there is a growing body of data that show the importance of other communication pathways caused by bi-directional transport of substances between the cells and the intercellular space. This type of interaction is called “volume transmission” and has not been rarely addressed in the model studies. The volume transmission pathway naturally appears in multidimensional quantitative models of cellular processes, but is not sufficiently represented at the level of lumped and computationally effective neural models. In this paper, we propose a simple model that allows one to study the features of volume transmission coupling at various spatial scales and taking into account various inhomogeneities. This model is obtained by the extension of the well-known FitzHugh–Nagumo system by the addition of the nonlinear terms and equations to describe, at a qualitative level, the release of potassium into the intercellular space, its diffusion, and the reverse effect on the neurons. The study of model dynamics in various spatial configurations has revealed a number of characteristic spatio-temporal types of behavior that include self-organizing bursting and phase-locked firing patterns, different scenarios of excitation spreading, noise-sustained target patterns, and long-living slow moving wave segments.

1.
P.
Dayan
and
L.
Abbott
, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, Computational Neuroscience Series (MIT Press, Cambridge, MA, 2001), ISBN 9780262041997.
2.
E. D.
Schutter
, Computational Neuroscience: Realistic Modeling for Experimentalists, Frontiers in Neuroscience (CRC Press, 2000), ISBN 9780849320682.
3.
E.
Izhikevich
, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Computational Neuroscience Series (MIT Press, Cambridge, MA, 2001), ISBN 9780262514200.
4.
M.
Shibata
and
J.
Bures
,
J. Neurobiol.
5
,
107
(
1974
).
5.
N.
Gorelova
and
J.
Bures
,
J. Neurobiol.
14
,
353
(
1983
).
6.
W.
Yao
,
H.
Huang
, and
R.
Miura
,
Bull. Math. Biol.
73
,
2773
(
2011
).
7.
G.
Somjen
,
H.
Kager
, and
W. J.
Wadman
,
J. Comput. Neurosci.
25
,
349
(
2008
).
8.
H.
Bolay
,
U.
Reuter
,
A.
Dunn
,
Z.
Huang
,
D.
Boas
, and
M.
Moskowitz
,
Nat. Med.
8
,
136
(
2002
).
9.
M. H.
Modarres
,
N. N.
Kuzma
,
T.
Kretzmer
,
A. I.
Pack
, and
M. M.
Lim
,
Neurobiol. Sleep Circadian Rhythms
2
,
59
(
2017
). ISSN 2451-9944.
10.
M.
Bazhenov
,
I.
Timofeev
,
M.
Steriade
, and
T.
Sejnowski
,
J. Neurophysiol.
92
,
1116
(
2004
).
11.
E.
Syková
and
C.
Nicholson
,
Physiol. Rev.
88
,
1277
(
2008
).
12.
L.
Agnati
,
K.
Fuxe
,
C.
Nicholson
, and
E.
Syková
, Volume Transmission Revisited, Progress in Brain Research (Book 125) (Elsevier Science, 2000), ISBN 9780444503145.
13.
W.
Fischer
,
K.
Wictorin
,
A.
Bjorklund
,
L.
Williams
,
S.
Varon
, and
F.
Gage
,
Nature
329
,
65
(
1987
).
14.
E.
Vizi
,
J.
Kiss
, and
B.
Lendvai
,
Neurochem. Int.
45
,
443
(
2004
).
15.
M.
Zoli
,
A.
Jansson
,
E.
Syková
,
L. F.
Agnati
, and
K.
Fuxe
,
Trends Pharmacol. Sci.
20
,
142
(
1999
). ISSN 0165-6147.
16.
F.
Ding
,
J.
O’Donnell
,
Q.
Xu
,
N.
Kang
,
N.
Goldman
, and
M.
Nedergaard
,
Science
352
,
550
(
2016
).
17.
A.
Diem
,
M.
Tan
,
N.
Bressloff
,
C.
Hawkes
,
A.
Morris
,
R.
Weller
, and
R.
Carare
,
Front. Aging Neurosci.
8
,
18
(
2016
).
18.
C.
Kyrtsos
and
J.
Baras
,
PLoS One
10
(
10
),
e0139574
(
2015
).
19.
B.
Lindner
,
J.
García-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
,
Phys. Rep.
392
(
6
),
321
(
2004
).
20.
R.
FitzHugh
, “
Impulses and Physiological States in Theoretical Models of Nerve Membrane
,”
Biophys. J.
1
(6),
445
466
(
1961
), ISSN 0006-3495.
21.
E.
Postnikov
and
O.
Titkova
,
Eur. Phys. J. Plus
131
(
11
),
411
(
2016
).
23.
D.
Postnov
,
L.
Ryazanova
,
E.
Mosekilde
, and
O.
Sosnovtseva
,
Int. J. Neural Syst.
16
,
99
(
2006
).
25.
M. A.
Dahlem
,
R.
Graf
,
A. J.
Strong
,
J. P.
Dreier
,
Y. A.
Dahlem
,
M.
Sieber
,
W.
Hanke
,
K.
Podoll
, and
E.
Schöll
,
Phys. D Nonlinear Phenom.
239
,
889
(
2010
).
26.
D.
Postnov
,
L.
Ryazanova
,
R.
Zhirin
,
E.
Mosekilde
, and
O.
Sosnovtseva
,
Int. J. Neural Syst.
17
,
105
(
2007
).
27.
D.
Postnov
,
F.
Müller
,
R.
Schuppner
, and
L.
Schimansky-Geier
,
Phys. Rev. E
80
,
031921
(
2009
).
28.
D. E.
Postnov
,
D. D.
Postnov
, and
L.
Schimansky-Geier
,
Brain Res.
1434
,
200
(
2012
).
29.
J. H.
Macke
,
L.
Buesing
,
J. P.
Cunningham
,
B. M.
Yu
,
K. V.
Shenoy
, and
M.
Sahani
, in Advances in Neural Information Processing Systems 24, edited by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (Curran Associates, Inc., 2011), pp. 1350–1358.
30.
B. M.
Yu
,
J. P.
Cunningham
,
G.
Santhanam
,
S. I.
Ryu
,
K. V.
Shenoy
, and
M.
Sahani
, in Advances in Neural Information Processing Systems 21, edited by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Curran Associates, Inc., 2009), pp. 1881–1888.
31.
G.
Deco
,
V.
Jirsa
,
A. R.
McIntosh
,
O.
Sporns
, and
R.
Kötter
,
Proc. Natl. Acad. Sci.
106
,
10302
(
2009
). ISSN 0027-8424, http://www.pnas.org/content/106/25/10302.full.pdf, http://www.pnas.org/content/106/25/10302.
32.
C.
Florence
,
L.
Baillie
, and
S.
Mulligan
,
PLoS One
7
,
e51124
(
2012
).
33.
A.
Verisokin
,
D.
Verveyko
, and
D.
Postnov
,
Phys. Rev. E
96
,
062409
(
2017
).
34.
W.
Softky
and
C.
Koch
,
J. Neurosci.
13
,
334
(
1993
).
35.
V.
Anishchenko
,
V.
Astakhov
,
A.
Neiman
,
T.
Vadivasova
, and
L.
Schimansky-Geier
,
Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Developments
(Springer-Verlag Berlin Heidelberg,
2007
), available at https://www.springer.com/la/book/9783540381648.
36.
N.
Hübel
,
E.
Schöll
, and
M. A.
Dahlem
,
PLoS Comput. Biol.
10
,
e1003551
(
2014
).
37.
N.
Hübel
and
M. A.
Dahlem
,
PLoS Comput. Biol.
10
,
e1003941
(
2014
).
38.
J.
Keener
and
J.
Sneyd
, Mathematical Physiology, Interdisciplinary Applied Mathematics (Springer, New York, 2001), ISBN 9780387983813.
39.
M.
Stich
,
A. S.
Mikhailov
, and
Y.
Kuramoto
,
Phys. Rev. E
79
,
026110
(
2009
).
40.
V.
Zykov
and
E.
Bodenschatz
,
Annu. Rev. Condens. Matter Phys.
9
,
435
(
2018
).
41.
V.
Zykov
and
K.
Showalter
,
Phys. Rev. Lett.
94
,
068302
(
2005
).
43.
F.
Müller
,
L.
Schimansky-Geier
, and
D.
Postnov
,
Ecol. Complex.
14
,
21
(
2013
).
44.
J.
García-Ojalvo
,
F.
Sagués
,
J. M.
Sancho
, and
L.
Schimansky-Geier
,
Phys. Rev. E
65
,
011105
(
2001
).
45.
Y.
Wu
,
J.
Li
,
S.
Liu
,
J.
Pang
,
M.
Du
, and
P.
Lin
,
Cogn. Neurodyn.
7
(
5
),
431
(
2013
).
46.
Y.
Wu
and
H.
Ying
,
Nonlinear Dyn.
89
,
2603
(
2017
).
47.
V.
Zykov
and
E.
Bodenschatz
,
New J. Phys.
16
,
043030
(
2014
).
48.
H.
Katsumata
,
K.
Konishi
, and
N.
Hara
,
Phys. Rev. E
97
,
042210
(
2018
).
You do not currently have access to this content.