Phase response curve is an important tool in the studies of stable self-sustained oscillations; it describes a phase shift under action of an external perturbation. We consider multistable oscillators with several stable limit cycles. Under a perturbation, transitions from one oscillating mode to another one may occur. We define phase transfer curves to describe the phase shifts at such transitions. This allows for a construction of one-dimensional maps that characterize periodically kicked multistable oscillators. We show that these maps are good approximations of the full dynamics for large periods of forcing.
REFERENCES
1.
C. C.
Canavier
, “Phase response curve
,” Scholarpedia
1
(12
), 1332
(2006
).2.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization. A Universal Concept in Nonlinear Sciences
(Cambridge University Press
, Cambridge
, 2001
).3.
4.
S.
Abramovich-Sivan
and S.
Akselrod
, “A single pacemaker cell model based on the phase response curve
,” Biol. Cybern.
79
, 67
–76
(1998
). 5.
M. A.
St Hilaire
, J. J.
Gooley
, S. B. S.
Khalsa
, R. E.
Kronauer
, C. A.
Czeisler
, and S. W.
Lockley
, “Human phase response curve to a 1h pulse of bright white light
,” J. Physiol.
590
(13
), 3035
–3045
(2012
). 6.
N.
Ikeda
, “Model of bidirectional interaction between myocardial pacemakers based on the phase response curve
,” Biol. Cybern.
43
(3
), 157
–167
(1982
). 7.
N.
Ikeda
, S.
Yoshizawa
, and T.
Sato
, “Difference equation model of ventricular parasystole as an interaction between cardiac pacemakers based on the phase response curve
,” J. Theor. Biol.
103
(3
), 439
(1983
). 8.
S. B. S.
Khalsa
, M. E.
Jewett
, C.
Cajochen
, and C. A.
Czeisler
, “A phase response curve to single bright light pulses in human subjects
,” J. Physiol.
549
(3
), 945
–952
(2003
). 9.
B.
Kralemann
, M.
Frühwirth
, A.
Pikovsky
, M.
Rosenblum
, T.
Kenner
, J.
Schaefer
, and M.
Moser
, “In vivo cardiac phase response curve elucidates human respiratory heart rate variability
,” Nat. Commun.
4
, 2418
(2013
). 10.
M.
Lengyel
, J.
Kwag
, O.
Paulsen
, and P.
Dayan
, “Matching storage and recall: Hippocampal spike timing-dependent plasticity and phase response curves
,” Nat. Neurosci.
8
, 1677
–1683
(2005
). .11.
R. F.
Galán
, G. B.
Ermentrout
, and N. N.
Urban
, “Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling
,” Phys. Rev. Lett.
94
, 158101
(2005
). 12.
T.
Harada
, H.-A.
Tanaka
, M. J.
Hankins
, and I. Z.
Kiss
, “Optimal waveform for the entrainment of a weakly forced oscillator
,” Phys. Rev. Lett.
105
, 088301
(2010
). 13.
A.
Zlotnik
, Y.
Chen
, I. Z.
Kiss
, H.-A.
Tanaka
, and J.-S.
Li
, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators
,” Phys. Rev. Lett.
111
, 024102
(2013
). 14.
A.
Pikovsky
, “Maximizing coherence of oscillations by external locking
,” Phys. Rev. Lett.
115
, 070602
(2015
). 15.
C. I.
Eastman
and H. J.
Burgess
, “How to travel the world without jet lag
,” Sleep Med. Clin.
4
(2
), 241
–255
(2009
). 16.
C. H.
Johnson
, “Phase response curves: What can they tell us about circadian clocks?
,” in Circadian Clocks from Cell to Human: Proceedings of the Fourth Sapporo Symposium on Biological Rhythm
, edited by T.
Hiroshige
, K.
Honma
(Hokkaido University Press
, Sapporo
, 1991
), pp. 209
–249
.17.
T.
Ohara
, H.
Fukuda
, and I. T.
Tokuda
, “Phase response of the Arabidopsis thaliana circadian clock to light pulses of different wavelengths
,” J. Biol. Rhythms
30
(2
), 95
–103
(2015
). 18.
Y.-S.
Wei
and H.-J.
Lee
, “Adjustability of the circadian clock in the cockroaches: A comparative study of two closely, related species, Blattella germanica and Blattella bisignata
,” Chronobiol. Int.
18
(5
), 767
–780
(2001
). 19.
O. V.
Popovych
and P. A.
Tass
, “Desynchronizing electrical and sensory coordinated reset neurostimulation
,” Front. Hum. Neurosci.
6
, 58
(2012
).20.
J.
Schwabedal
, A.
Pikovsky
, B.
Kralemann
, and M.
Rosenblum
, “Optimal phase description of chaotic oscillators
,” Phys. Rev. E
85
, 026216
(2012
). 21.
J. T. C.
Schwabedal
and A.
Pikovsky
, “Phase description of stochastic oscillations
,” Phys. Rev. Lett.
110
, 134101
(2013
). 22.
J.
Guckenheimer
, “Isochrons and phaseless sets
,” J. Math. Biol.
1
, 259
–273
(1975
). 23.
W. Z.
Zeng
, L.
Glass
, and A.
Shrier
, “The topology of phase response curves induced by single and paired stimuli
,” J. Biol. Rhythms
7
, 89
–104
(1992
). 24.
G. P.
Krishnan
, M.
Bazhenov
, and A.
Pikovsky
, “Multi-pulse phase resetting curve
,” Phys. Rev. E
88
, 042902
(2013
). 25.
V.
Klinshov
, S.
Yanchuk
, A.
Stephan
, and V.
Nekorkin
, “Phase response function for oscillators with strong forcing or coupling
,” Europhys. Lett.
118
(5
), 50006
(2017
). 26.
G. M.
Zaslavsky
, “The symplest case of a strange attractor
,” Phys. Lett. A
69
(3
), 145
–147
(1978
). © 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.