Phase response curve is an important tool in the studies of stable self-sustained oscillations; it describes a phase shift under action of an external perturbation. We consider multistable oscillators with several stable limit cycles. Under a perturbation, transitions from one oscillating mode to another one may occur. We define phase transfer curves to describe the phase shifts at such transitions. This allows for a construction of one-dimensional maps that characterize periodically kicked multistable oscillators. We show that these maps are good approximations of the full dynamics for large periods of forcing.

1.
C. C.
Canavier
, “
Phase response curve
,”
Scholarpedia
1
(
12
),
1332
(
2006
).
2.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization. A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
3.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience
(
MIT Press
,
Cambridge, MA
,
2007
).
4.
S.
Abramovich-Sivan
and
S.
Akselrod
, “
A single pacemaker cell model based on the phase response curve
,”
Biol. Cybern.
79
,
67
76
(
1998
).
5.
M. A.
St Hilaire
,
J. J.
Gooley
,
S. B. S.
Khalsa
,
R. E.
Kronauer
,
C. A.
Czeisler
, and
S. W.
Lockley
, “
Human phase response curve to a 1h pulse of bright white light
,”
J. Physiol.
590
(
13
),
3035
3045
(
2012
).
6.
N.
Ikeda
, “
Model of bidirectional interaction between myocardial pacemakers based on the phase response curve
,”
Biol. Cybern.
43
(
3
),
157
167
(
1982
).
7.
N.
Ikeda
,
S.
Yoshizawa
, and
T.
Sato
, “
Difference equation model of ventricular parasystole as an interaction between cardiac pacemakers based on the phase response curve
,”
J. Theor. Biol.
103
(
3
),
439
(
1983
).
8.
S. B. S.
Khalsa
,
M. E.
Jewett
,
C.
Cajochen
, and
C. A.
Czeisler
, “
A phase response curve to single bright light pulses in human subjects
,”
J. Physiol.
549
(
3
),
945
952
(
2003
).
9.
B.
Kralemann
,
M.
Frühwirth
,
A.
Pikovsky
,
M.
Rosenblum
,
T.
Kenner
,
J.
Schaefer
, and
M.
Moser
, “
In vivo cardiac phase response curve elucidates human respiratory heart rate variability
,”
Nat. Commun.
4
,
2418
(
2013
).
10.
M.
Lengyel
,
J.
Kwag
,
O.
Paulsen
, and
P.
Dayan
, “
Matching storage and recall: Hippocampal spike timing-dependent plasticity and phase response curves
,”
Nat. Neurosci.
8
,
1677
1683
(
2005
). .
11.
R. F.
Galán
,
G. B.
Ermentrout
, and
N. N.
Urban
, “
Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling
,”
Phys. Rev. Lett.
94
,
158101
(
2005
).
12.
T.
Harada
,
H.-A.
Tanaka
,
M. J.
Hankins
, and
I. Z.
Kiss
, “
Optimal waveform for the entrainment of a weakly forced oscillator
,”
Phys. Rev. Lett.
105
,
088301
(
2010
).
13.
A.
Zlotnik
,
Y.
Chen
,
I. Z.
Kiss
,
H.-A.
Tanaka
, and
J.-S.
Li
, “
Optimal waveform for fast entrainment of weakly forced nonlinear oscillators
,”
Phys. Rev. Lett.
111
,
024102
(
2013
).
14.
A.
Pikovsky
, “
Maximizing coherence of oscillations by external locking
,”
Phys. Rev. Lett.
115
,
070602
(
2015
).
15.
C. I.
Eastman
and
H. J.
Burgess
, “
How to travel the world without jet lag
,”
Sleep Med. Clin.
4
(
2
),
241
255
(
2009
).
16.
C. H.
Johnson
, “
Phase response curves: What can they tell us about circadian clocks?
,” in
Circadian Clocks from Cell to Human: Proceedings of the Fourth Sapporo Symposium on Biological Rhythm
, edited by
T.
Hiroshige
,
K.
Honma
(
Hokkaido University Press
,
Sapporo
,
1991
), pp.
209
249
.
17.
T.
Ohara
,
H.
Fukuda
, and
I. T.
Tokuda
, “
Phase response of the Arabidopsis thaliana circadian clock to light pulses of different wavelengths
,”
J. Biol. Rhythms
30
(
2
),
95
103
(
2015
).
18.
Y.-S.
Wei
and
H.-J.
Lee
, “
Adjustability of the circadian clock in the cockroaches: A comparative study of two closely, related species, Blattella germanica and Blattella bisignata
,”
Chronobiol. Int.
18
(
5
),
767
780
(
2001
).
19.
O. V.
Popovych
and
P. A.
Tass
, “
Desynchronizing electrical and sensory coordinated reset neurostimulation
,”
Front. Hum. Neurosci.
6
,
58
(
2012
).
20.
J.
Schwabedal
,
A.
Pikovsky
,
B.
Kralemann
, and
M.
Rosenblum
, “
Optimal phase description of chaotic oscillators
,”
Phys. Rev. E
85
,
026216
(
2012
).
21.
J. T. C.
Schwabedal
and
A.
Pikovsky
, “
Phase description of stochastic oscillations
,”
Phys. Rev. Lett.
110
,
134101
(
2013
).
22.
J.
Guckenheimer
, “
Isochrons and phaseless sets
,”
J. Math. Biol.
1
,
259
273
(
1975
).
23.
W. Z.
Zeng
,
L.
Glass
, and
A.
Shrier
, “
The topology of phase response curves induced by single and paired stimuli
,”
J. Biol. Rhythms
7
,
89
104
(
1992
).
24.
G. P.
Krishnan
,
M.
Bazhenov
, and
A.
Pikovsky
, “
Multi-pulse phase resetting curve
,”
Phys. Rev. E
88
,
042902
(
2013
).
25.
V.
Klinshov
,
S.
Yanchuk
,
A.
Stephan
, and
V.
Nekorkin
, “
Phase response function for oscillators with strong forcing or coupling
,”
Europhys. Lett.
118
(
5
),
50006
(
2017
).
26.
G. M.
Zaslavsky
, “
The symplest case of a strange attractor
,”
Phys. Lett. A
69
(
3
),
145
147
(
1978
).
You do not currently have access to this content.