The multistable behavior of neural networks is actively being studied as a landmark of ongoing cerebral activity, reported in both functional Magnetic Resonance Imaging (fMRI) and electro- or magnetoencephalography recordings. This consists of a continuous jumping between different partially synchronized states in the absence of external stimuli. It is thought to be an important mechanism for dealing with sensory novelty and to allow for efficient coding of information in an ever-changing surrounding environment. Many advances have been made to understand how network topology, connection delays, and noise can contribute to building this dynamic. Little or no attention, however, has been paid to the difference between local chaotic and stochastic influences on the switching between different network states. Using a conductance-based neural model that can have chaotic dynamics, we showed that a network can show multistable dynamics in a certain range of global connectivity strength and under deterministic conditions. In the present work, we characterize the multistable dynamics when the networks are, in addition to chaotic, subject to ion channel stochasticity in the form of multiplicative (channel) or additive (current) noise. We calculate the Functional Connectivity Dynamics matrix by comparing the Functional Connectivity (FC) matrices that describe the pair-wise phase synchronization in a moving window fashion and performing clustering of FCs. Moderate noise can enhance the multistable behavior that is evoked by chaos, resulting in more heterogeneous synchronization patterns, while more intense noise abolishes multistability. In networks composed of nonchaotic nodes, some noise can induce multistability in an otherwise synchronized, nonchaotic network. Finally, we found the same results regardless of the multiplicative or additive nature of noise.

1.
J.
Cabral
,
M. L.
Kringelbach
, and
G.
Deco
,
Neuroimage
160
,
84
(
2017
).
2.
M. G.
Preti
,
T. A. W.
Bolton
, and
D.
Van De Ville
,
Neuroimage
160
,
41
(
2017
).
3.
G.
Deco
,
V.
Jirsa
,
A. R.
McIntosh
,
O.
Sporns
, and
R.
Kötter
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
10302
(
2009
).
4.
G.
Deco
and
V. K.
Jirsa
,
J. Neurosci.
32
,
3366
(
2012
).
5.
K.
Friston
,
M.
Breakspear
, and
G.
Deco
,
Front. Comput. Neurosci.
6
,
1
(
2012
).
6.
G.
Deco
,
A.
Ponce-Alvarez
,
D.
Mantini
,
G. L.
Romani
,
P.
Hagmann
, and
M.
Corbetta
,
J. Neurosci.
33
,
11239
(
2013
).
7.
D. S.
Bassett
and
O.
Sporns
,
Nat. Neurosci.
20
,
353
(
2017
).
8.
A.
Ghosh
,
Y.
Rho
,
A. R.
McIntosh
,
R.
Kötter
, and
V. K.
Jirsa
,
PLoS Comput. Biol.
4
,
e1000196
(
2008
).
9.
J.
Cabral
,
H.
Luckhoo
,
M.
Woolrich
,
M.
Joensson
,
H.
Mohseni
,
A.
Baker
,
M. L.
Kringelbach
, and
G.
Deco
,
Neuroimage
90
,
423
(
2014
).
10.
C. A.
Lea-Carnall
,
M. A.
Montemurro
,
N. J.
Trujillo-Barreto
,
L. M.
Parkes
, and
W.
El-Deredy
,
PLoS Comput. Biol.
12
,
e1004740
(
2016
).
11.
L. L.
Gollo
and
M.
Breakspear
,
Philos. Trans. R. Soc. B Biol. Sci.
369
,
20130532
(
2014
).
12.
L. L.
Gollo
,
A.
Zalesky
,
R. M.
Hutchison
,
M.
van den Heuvel
, and
M.
Breakspear
,
Philos. Trans. R. Soc. B Biol. Sci.
370
,
20140165
(
2015
).
13.
E. C. A.
Hansen
,
D.
Battaglia
,
A.
Spiegler
,
G.
Deco
, and
V. K.
Jirsa
,
Neuroimage
105
,
525
(
2015
).
14.
G.
Deco
,
J.
Cabral
,
M. W.
Woolrich
,
A. B. A.
Stevner
,
T. J.
van Hartevelt
, and
M. L.
Kringelbach
,
Neuroimage
152
,
538
(
2017
).
15.
G.
Deco
,
M. L.
Kringelbach
,
V. K.
Jirsa
, and
P.
Ritter
,
Sci. Rep.
7
,
3095
(
2017
).
16.
K.
Xu
,
J. P.
Maidana
,
S.
Castro
, and
P.
Orio
,
Sci. Rep.
8
,
8370
(
2018
).
17.
P.
Miller
,
Curr. Opin. Neurobiol.
40
,
14
(
2016
).
18.
A. N.
Pisarchik
and
U.
Feudel
,
Phys. Rep.
540
,
167
(
2014
).
19.
H.
Sompolinsky
,
A.
Crisanti
, and
H.
Sommers
,
Phys. Rev. Lett.
61
,
259
(
1988
).
20.
C.
van Vreeswijk
and
H.
Sompolinsky
,
Science
274
,
1724
(
1996
).
21.
22.
M.
Breakspear
,
J. R.
Terry
, and
K. J.
Friston
,
Network
14
,
703
(
2003
).
23.
D.
Fasoli
,
A.
Cattani
, and
S.
Panzeri
,
PLoS Comput. Biol.
12
,
e1004992
(
2016
).
24.
A. A.
Faisal
,
L. P. J.
Selen
, and
D. M.
Wolpert
,
Nat. Rev. Neurosci.
9
,
292
(
2008
).
25.
A. A.
Faisal
,
J. A.
White
, and
S. B.
Laughlin
,
Curr. Biol.
15
,
1143
(
2005
).
26.
C.
O’Donnell
and
M. C. W.
van Rossum
,
Front. Comput. Neurosci.
8
,
105
(
2014
).
27.
A.
Destexhe
,
M.
Rudolph
,
J. M.
Fellous
, and
T. J.
Sejnowski
,
Neuroscience
107
,
13
(
2001
).
29.
C. J.
Honey
,
R.
Kötter
,
M.
Breakspear
, and
O.
Sporns
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
10240
(
2007
).
30.
F.
Freyer
,
J. A.
Roberts
,
P.
Ritter
, and
M.
Breakspear
,
PLoS Comput. Biol.
8
,
e1002634
(
2012
).
31.
F.
Freyer
,
J. A.
Roberts
,
R.
Becker
,
P. A.
Robinson
,
P.
Ritter
, and
M.
Breakspear
,
J. Neurosci.
31
,
6353
(
2011
).
32.
H. A.
Braun
,
M. T.
Huber
,
M.
Dewald
,
K.
Schäfer
, and
K.
Voigt
,
Int. J. Bifurc. Chaos
08
,
881
(
1998
).
33.
H. A.
Braun
,
M. T.
Huber
,
N.
Anthes
,
K.
Voigt
,
A.
Neiman
,
X.
Pei
, and
F.
Moss
,
Neurocomputing
32–33
,
51
(
2000
).
34.
P.
Orio
,
A.
Parra
,
R.
Madrid
,
O.
González
,
C.
Belmonte
,
F.
Viana
,
O.
Gonzalez
,
C.
Belmonte
, and
F.
Viana
,
J. Neurophysiol.
108
,
3009
(
2012
).
35.
K.
Xu
,
J. P.
Maidana
,
M.
Caviedes
,
D.
Quero
,
P.
Aguirre
, and
P.
Orio
,
Front. Comput. Neurosci.
11
,
1
(
2017
).
36.
P.
Orio
and
D.
Soudry
,
PLoS One
7
,
e36670
(
2012
).
38.
A.
Rodriguez
and
A.
Laio
,
Science
344
,
1492
(
2014
).
39.
P.
Yger
,
G. L.
Spampinato
,
E.
Esposito
,
B.
Lefebvre
,
S.
Deny
,
C.
Gardella
,
M.
Stimberg
,
F.
Jetter
,
G.
Zeck
,
S.
Picaud
,
J.
Duebel
, and
O.
Marre
,
Elife
7
,
e34518
(
2018
).
40.
A.
González
,
G.
Ugarte
,
C.
Restrepo
,
G.
Herrera
,
R.
Piña
,
J. A.
Gómez-Sánchez
,
M.
Pertusa
,
P.
Orio
, and
R.
Madrid
,
J. Neurosci.
37
,
3553
(
2017
).
41.
E.
Olivares
,
S.
Salgado
,
J. P.
Maidana
,
G.
Herrera
,
M.
Campos
,
R.
Madrid
, and
P.
Orio
,
PLoS One
10
,
e0139314
(
2015
).
42.
J.
Cabral
,
D.
Vidaurre
,
P.
Marques
,
R.
Magalhães
,
P.
Silva Moreira
,
J.
Miguel Soares
,
G.
Deco
,
N.
Sousa
, and
M. L.
Kringelbach
,
Sci. Rep.
7
,
5135
(
2017
).
43.
E. A.
Allen
,
E.
Damaraju
,
S. M.
Plis
,
E. B.
Erhardt
,
T.
Eichele
, and
V. D.
Calhoun
,
Cereb. Cortex
24
,
663
(
2014
).
44.
U.
Feudel
,
Int. J. Bifurc. Chaos
18
,
1607
(
2008
).
45.
T.
Stankovski
,
T.
Pereira
,
P. V. E.
McClintock
, and
A.
Stefanovska
,
Rev. Mod. Phys.
89
,
045001
(
2017
).
46.
E.
Tognoli
and
J. A. S.
Kelso
,
Neuron
81
,
35
(
2014
).
47.
S.
Kim
,
S. H.
Park
, and
C. S.
Ryu
,
Phys. Rev. Lett.
79
,
2911
(
1997
).
48.
J.
Pham
,
K.
Pakdaman
, and
J.-F.
Vibert
,
Phys. Rev. E
58
,
3610
(
1998
).
49.
Q.
Shan
,
H.
Zhang
,
Z.
Wang
, and
Z.
Zhang
,
IEEE Trans. Neural Netw. Learn. Syst.
29
,
597
(
2018
).
50.
J.
Shen
and
J.
Wang
,
IEEE Trans. Neural Netw.
18
,
1857
(
2007
).
51.
W. J.
Freeman
,
H.-J.
Chang
,
B. C.
Burke
,
P. A.
Rose
, and
J.
Badler
,
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
44
,
989
(
1997
).
52.
M. D.
McDonnell
and
D.
Abbott
,
PLoS Comput. Biol.
5
,
e1000348
(
2009
).
53.
N.
Berglund
and
B.
Gentz
,
Noise-Induced Phenomena in Slow-Fast Dynamical Systems
(
Springer-Verlag
,
London
,
2006
).
54.
J. B.
Gao
,
C. C.
Chen
,
S. K.
Hwang
, and
J. M.
Liu
,
Int. J. Mod. Phys. B
13
,
3283
(
1999
).
56.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
57.
C.
Finke
,
J.
Vollmer
,
S.
Postnova
, and
H. A.
Braun
,
Math. Biosci.
214
,
109
(
2008
).
58.
K.
Fisch
,
T.
Schwalger
,
B.
Lindner
,
A. V. M.
Herz
, and
J.
Benda
,
J. Neurosci.
32
,
17332
(
2012
).
59.
T.
Schwalger
,
K.
Fisch
,
J.
Benda
, and
B.
Lindner
,
PLoS Comput. Biol.
6
,
e1001026
(
2010
).
60.
D.
Vidaurre
,
A. J.
Quinn
,
A. P.
Baker
,
D.
Dupret
,
A.
Tejero-Cantero
, and
M. W.
Woolrich
,
Neuroimage
126
,
81
(
2016
).
61.
F.
Freyer
,
K.
Aquino
,
P. A.
Robinson
,
P.
Ritter
, and
M.
Breakspear
,
J. Neurosci.
29
,
8512
(
2009
).
62.
B. H.
Jansen
and
V. G.
Rit
,
Biol. Cybern.
366
,
357
(
1995
).
You do not currently have access to this content.