One of the greatest challenges to science, in particular, to neuroscience, is to understand how processes at different levels of organization are related to each other. In connection with this problem is the question of the functional significance of fluctuations, noise, and chaos. This paper deals with three related issues: (1) how processes at different organizational levels of neural systems might be related, (2) the functional significance of non-linear neurodynamics, including oscillations, chaos, and noise, and (3) how computational models can serve as useful tools in elucidating these types of issues. In order to capture and describe phenomena at different micro (molecular), meso (cellular), and macro (network) scales, the computational models need to be of appropriate complexity making use of available experimental data. I exemplify by two major types of computational models, those of Hans Braun and colleagues and those of my own group, which both aim at bridging gaps between different levels of neural systems. In particular, the constructive role of noise and chaos in such systems is modelled and related to functions, such as sensation, perception, learning/memory, decision making, and transitions between different (un-)conscious states. While there is, in general, a focus on upward causation, I will also discuss downward causation, where higher level activity may affect the activity at lower levels, which should be a condition for any functional role of consciousness and free will, often considered to be problematic to science.

1.
Anishchenko
,
V. S.
,
Neiman
,
A. B.
, and
Safanova
,
M. A.
, “
Stochastic resonance in chaotic systems
,”
J. Stat. Phys.
70
,
183
196
(
1993
).
2.
Århem
,
P.
and
Johansson
,
S.
, “
Spontaneous signalling in small central neurons: mechanisms and roles of spike-amplitude and spike-interval fluctuations
,”
Int. J. Neural Syst.
7
,
369
376
(
1996
).
3.
Århem
,
P.
and
Liljenström
,
H.
, “
On the Coevolution of Cognition and Consciousness
,”
J. Theor. Biol.
,
187
,
601
612
(
1997
).
4.
Disorder Versus Order in Brain Function – Essays in Theoretical Neurobiology
, edited by
P.
Århem
,
C.
Blomberg
, and
H.
Liljenström
(
World Scientific
,
London
,
2000
).
5.
Århem
,
P.
,
Braun
,
H.
,
Huber
,
M.
, and
Liljenström
,
H.
, “
Non-linear state transitions in neural systems: from ion channels to networks
,” in
Micro – Meso – Macro: Addressing Complex Systems Couplings
, edited by
H.
Liljenström
and
U.
Svedin
(
World Scientific Publ. Co
,
Singapore
,
2005
), pp.
37
72
.
6.
Århem
,
P.
,
Klement
,
G.
, and
Blomberg
,
C.
, “
Channel density regulation of neuronal coding: graded action potentials and repetitive firing in a cortical neuron model
,”
Biophys. J.
90
,
1
13
(
2006
).
7.
Babloyantz
,
A.
,
Nicolis
,
C.
, and
Salazar
,
M.
, “
Evidence for chaotic dynamics of brain activity during the sleep cycle
,”
Phys. Lett.
A111
,
152
156
(
1985
).
8.
Babloyantz
,
A.
and
Lourenzo
,
C.
, “
Brain chaos and computation
,”
Int. J. Neur. Syst.
7
,
461
471
(
1996
).
9.
Balazsi
,
G.
,
Kish
,
L. B.
, and
Moss
,
F.
, “
Spatiotemporal stochastic resonance and its consequences in neural model systems
,”
Chaos
11
,
563
569
(
2001
).
10.
Basu
,
S.
and
Liljenström
,
H.
, “
Role of noise characteristics in cortical state transitions
,”
BioSystems
63
,
57
69
(
2001
).
11.
20 Years of Computational Neuroscience
, edited by
J. M.
Bower
(
Springer
,
2013
).
12.
Braun
,
H. A.
, “
Causality in neuroscience and its limitations: bottom-up, top-down, and round-about
,” in
Advances in Cognitive Neurodynamics (V)
, edited by
R.
Wang
and
X.
Pan
(
Springer
,
Singapore
,
2016
).
13.
Braun
,
H. A.
, in
Presentation at the Agora Conference on Free Will
,
25–28 June 2017
,
Sigtuna, Sweden
, (
2017
), see http://agoraforbiosystems.se/conferences/agora-conference-on-free-will/.
14.
Braun
,
H. A.
and
Postnova
,
S.
, “
Mechanism-based models of neurons and synapses for multi-level simulations of brain functions
,”
IEICE Proc. Ser.
1
,
308
311
(
2012
).
15.
Braun
,
H. A.
,
Bade
,
H.
, and
Hensel
,
H.
, “
Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms
,”
Pflügers Arch.
386
,
1
(
1980
).
16.
Braun
,
H. A.
,
Schäfer
,
K.
,
Wissing
,
H.
, and
Hensel
,
H.
, “
Periodic transduction processes in thermosensitive receptors
,” in
Sensory Receptor Mechanisms
, edited by
W.
Hamann
and
A.
Iggo
(
World Scientific Publication
,
Singapore
,
1984
), pp.
147
156
.
17.
Braun
,
H. A.
,
Wissing
,
H.
,
Schäfer
,
K.
, and
Hirsch
,
M. C.
, “
Oscillation and noise determine signal transduction in shark multimodal sensory cells
,”
Nature
367
,
270
273
(
1994
).
18.
Braun
,
H. A.
,
Schafer
,
K.
,
Voigt
,
K.
,
Peters
,
R.
,
Bretschneider
,
F.
,
Pei
,
X.
,
Wilkens
,
L.
, and
Moss
,
F.
, “
Low-dimensional dynamics in sensory biology. 1: Thermally sensitive electroreceptors of the catfish
,”
J. Comput. Neurosci.
4
,
335
(
1997
).
19.
Braun
,
H. A.
,
Huber
,
M.
,
Dewald
,
M.
,
Schäfer
,
K.
, and
Voigt
,
K.
, “
Computer simulations of neuronal signal transduction: The role of nonlinear dynamics and noise
,”
Int. J. Bifurcation Chaos
8
,
881
(
1998
).
20.
Braun
,
H. A.
,
Dewald
,
M.
,
Voigt
,
K.
,
Huber
,
M.
,
Pei
,
X.
, and
Moss
,
F.
, “
Finding unstable periodic orbits in electroreceptors, cold receptors and hypothalamic neurons
,”
Neurocomputing
26
,
79
(
1999a
).
21.
Braun
,
H. A.
,
Dewald
,
M.
,
Schäfer
,
K.
,
Voigt
,
K.
,
Pei
,
X.
,
Dolan
,
K.
, and
Moss
,
F.
, “
Low-dimensional dynamics in sensory biology 2: Facial cold receptors of the rat
,”
J. Comput. Neurosci.
7
,
17
(
1999b
).
22.
Braun
,
H. A.
,
Huber
,
M. T.
,
Anthes
,
N.
,
Voigt
,
K.
,
Neiman
,
A.
,
Pei
,
X.
, and
Moss
,
F.
, “
Noise-induced impulse pattern modifications at different dynamical period-one situations in a computer model of temperature encoding
,”
BioSystems
62
,
99
(
2001
).
23.
Braun
,
H. A.
,
Schaefer
,
K.
,
Voigt
,
K.
, and
Huber
,
M. T.
, “
Temperature encoding in peripheral cold receptors: Oscillations, resonances, chaos and noise
,” in
Nova Acta Leopoldina, Nonlinear Dynamics and the Spatiotemporal Principles in Biology
(
2003a
), Vol.
88
, pp.
293
.
24.
Braun
,
H. A.
,
Voigt
,
K.
, and
Huber
,
M. T.
, “
Oscillations, resonances and noise: Basis of flexible neuronal pattern generation
,”
BioSystems
71
,
39
(
2003b
).
25.
Braun
,
H. A.
,
Voigt
,
K.
,
Krieg
,
J. C.
, and
Huber
,
M. T.
,
“Indications of physiological and pathophysiological relevance of noise and chaos
,”
Fluct. Noise Lett.
4
,
L207
(
2004a
).
26.
Braun
,
H. A.
,
Voigt
,
K.
, and
Moss
,
F.
, “
Chaos in the brain and in sensory neurons
,”
Appl. Nonlinear Dyn.
11
,
77
(
2004b
).
27.
Braun
,
H. A.
,
Schwabedal
,
J.
,
Dewald
,
M.
,
Finke
,
C.
,
Postnova
,
S.
, et al, “
Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model
,”
Chaos
21
,
047509
(
2011
).
28.
Braun
,
W.
,
Eckhardt
,
B.
,
Braun
,
H. A.
, and
Huber
,
M. T.
, “
Phase space structure of a thermoreceptor
,”
Phys. Rev. E
62
,
6352
6360
(
2000
).
29.
Bulsara
,
A.
,
Jacobs
,
E. W.
,
Zhou
,
T.
,
Moss
,
F.
, and
Kiss
,
L.
, “
Stochastic resonance in a single neuron model: Theory and analog simulation
,”
J. Theor. Biol.
152
,
531
555
(
1991
).
30.
Advances in Cognitive Neurodynamics (VI)
, edited by
J. M.
Delgado-Garcia
,
X.
Pan
,
R.
Sánchez-Campusano
, and
R.
Wang
(
Springer
,
2018
).
31.
Dennett
,
D.
,
Consciousness Explained
(
The Penguin Press
,
London
,
1991
).
32.
Dennett
,
D.
,
From Bacteria to Bach and Back: The Evolution of Minds
(
W. W. Norton & Company
,
2017
).
33.
Desmurget
,
M.
,
Reilly
,
K. T.
,
Richard
,
N.
,
Szathmari
,
A.
,
Mottolese
,
C.
, and
Sirigu
,
A.
, “
Movement intention after parietal stimulation in humans
,”
Science
324
,
811
813
(
2009
).
34.
Douglass
,
J. K.
,
Wilkens
,
L.
,
Pantazelou
,
E.
, and
Moss
,
F.
, “
Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance
,”
Nature.
365
,
337
40
(
1993
).
35.
Doya
,
K.
, “
Modulators of decision making
,”
Nat. Neurosci.
11
,
410
416
(
2008
).
36.
El-Boustani
,
S.
and
Destexhe
,
A.
, “
Brain dynamics at multiple scales: Can one reconcile the apparent low-dimensional chaos of macroscopic variables with the seemingly stochastic behavior of single neurons?
,”
Int. J. Bifurc. Chaos
20
,
1687
1702
(
2010
).
37.
Erdi
,
P.
,
Gröbler
,
T.
,
Barna
,
G.
, and
Kaski
,
K.
, “
Dynamics of the olfactory bulb: bifurcations, learning, and memory
,”
Biol. Cybern.
69
,
57
66
(
1993
).
38.
Frank
,
M. J.
,
Cohen
,
M. X.
, and
Sanfey
,
A. G.
, “
Multiple systems in decision making: A neurocomputational perspective
,”
Curr. Dir. Psychol. Sci.
18
,
73
77
(
2009
).
39.
Freeman
,
W. J.
,
Mass Action in the Nervous System
(
Academic Press
,
New York
,
1975
).
40.
Freeman
,
W. J.
, “
Nonlinear gain mediating cortical stimulus-response relations
,”
Biol. Cybern.
33
,
237
247
(
1979
).
41.
Freeman
,
W. J.
, “
The physiology of perception
,”
Sci. Am.
264
(
2
),
78
85
(
1991
).
42.
Freeman
,
W. J.
, “
Random activity at the microscopic neural level in cortex (“noise”) sustains and is regulated by low dimensional dynamics of macroscopic cortical activity (“chaos”)
,”
Int. J. Neur. Syst.
7
,
473
480
(
1996
).
43.
Freeman
,
W. J.
, “
Consciousness, intentionality and causality
,”
J. Conscious. Stud.
6
(
11-12
),
143
72
(
1999
).
44.
Freeman
,
W. J.
,
Neurodynamics – An Exploration in Mesoscopic Brain Dynamics
(
Springer-Verlag
,
London
,
2000
).
45.
Freeman
,
W. J.
,
How Brains Make Up Their Minds
(
Columbia University Press
,
New York
,
2001
).
46.
Freeman
,
W. J.
, “
Indirect biological measures of consciousness from field studies of brains as dynamical systems
,”
Neural Netw.
20
,
1021
1031
(
2007
).
47.
Freeman
,
W. J.
, “
Nonlinear dynamics and intention according to Aquinas
,”
Mind Matter
6
(
2
),
207
234
(
2009
).
48.
Freeman
,
W. J.
and
Skarda
,
C. A.
, “
Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view
,”
Brain Res. Rev.
10
,
147
175
(
1985
).
49.
Friedrich
,
P.
and
Urban
,
B. W.
, “
Interaction of intravenous anesthetics with human neuronal potassium currents in relation to clinical concentrations
,”
Anesthesiology
91
,
1853
1860
(
1999
).
50.
Gencay
,
R.
and
Dechert
,
W. D.
, “
An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system
,”
Physica
59D
,
142
157
(
1992
).
51.
Gerstner
,
W.
,
Kistler
,
W. M.
,
Naud
,
R.
, and
Paninski
,
L.
,
Neuronal Dynamics – From Single Neurons to Networks and Models of Cognition
(
Cambridge University Press
,
2014
).
52.
Gu
,
Y.
and
Liljenström
,
H.
, “
A neural network model of attention-modulated neurodynamics
,”
Cogn. Neurodyn.
1
,
275
285
(
2007
).
53.
Gu
,
Y.
,
Wahlund
,
B.
,
Liljenström
,
H.
,
von Rosen
,
D.
, and
Liang
,
H.
, “
Analysis of phase shifts in clinical EEG evoked by ECT
,”
Neurocomputing
65–66
,
475
483
(
2005
).
54.
Gu
,
Y.
,
Halnes
,
G.
,
Liljenström
,
H.
,
Liang
,
H.
,
von Rosen
,
D.
, and
Wahlund
,
B.
, “
Modelling ECT effects by connectivity changes in cortical neural networks
,”
Neurocomputing
69
,
1341
1347
(
2006
).
55.
Haberly
,
L. B.
and
Bower
,
J. M.
, “
Olfactory cortex: model circuit for study of associative memory
,”
Trends Neurosci.
12
,
258
264
(
1989
).
56.
Haken
,
H.
,
Synergetics: An Introduction
(
Springer-Verlag
,
Berlin
,
1983
).
57.
Haken
,
H.
,
Synergetic Computers and Cognition: A Top-Down Approach to Neural Nets
(
Springer Verlag
,
Berlin
,
1991
).
58.
Haken
,
H.
, “
A physicist’s view of brain functioning: Coherence, chaos, pattern formation, noise
,” in
Disorder versus Order in Brain Function – Essays in Theoretical Neurobiology
, edited by
P.
Århem
 et al (
World Scientific
,
Singapore
,
2000
), pp.
135
184
.
59.
Halnes
,
G.
,
Liljenström
,
H.
, and
Århem
,
P.
, “
Density dependent neurodynamics
,”
BioSyst
89
,
126
134
(
2007
).
60.
Harris
,
S.
,
Free Will
(
Free Press
,
New York
,
2012
).
61.
Harris
,
T.
, et al, “
General anesthetic action at an internal protein site involving the S4-S5 cytoplasmic loop of a neuronal K(+) channel
,”
J. Biol. Chem.
275
,
4928
4936
(
2000
).
62.
Hassannejad Nazir
,
A.
and
Liljenström
,
H.
, “
A cortical network model for cognitive and emotional influences in human decision making
,”
BioSyst.
136
,
128
141
(
2015
).
63.
Hebb
,
D. O.
,
The Organization of Behavior
(
Wiley
,
New York
,
1949
).
64.
Hille
,
B.
,
Ion Channels of Excitable Membranes
, 3rd ed. (
Sinauer
,
Sunderland
,
MA
,
2001
), pp.
814
.
65.
Hodgkin
,
A. L.
and
Huxley
,
A. F.
, “
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo
,”
J. Physiol.
117
,
500
544
(
1952
).
66.
Hopfield
,
J. J.
, “
Neural networks and physical systems with emergent collective computational abilities
,”
Proc. Natl. Acad. Sci. U.S.A.,
79
,
2554
2558
(
1982
).
67.
Hopfield
,
J. J.
, “
Neurons with graded response have collective computational properties like those of two-state neurons
,”
Proc. Natl. Acad. Sci. U.S.A.,
81
,
3088
3092
(
1984
).
68.
Huber
,
M. T.
and
Braun
,
H. A.
, “
Stimulus-response curves of a neuronal model for noisy subthreshold oscillations and related spike generation
,”
Phys. Rev. E
73
,
041929
(
2006
).
69.
Huber
,
M. T.
,
Braun
,
H. A.
, and
Krieg
,
J. C.
, “
Consequences of deterministic and random dynamics for the course of affective disorders
,”
Biol. Psychiatry
46
,
256
262
(
1999
).
70.
Huber
,
M. T.
,
Braun
,
H. A.
, and
Krieg
,
J. C.
, “
Effects of noise on different disease states of recurrent affective disorders
,”
Biol Psychiatry
47
,
634
642
(
2000
).
71.
Johansson
,
S.
Electrophysiology of small cultured hippocampal neurons
,”
Doctoral thesis
(
Karolinska Institutet
,
Stockholm
,
1991
).
72.
Johansson
,
S.
and
Århem
,
P.
, “
Single channel currents trigger action potentials in small cultured hippocampal neurons
,”
Proc. Natl. Acad. Sci. U.S.A.
91
,
1761
1765
(
1994
).
73.
John
,
E. R.
and
Prichep
,
L. S.
, “
The anesthetic cascade: a theory of how anesthesia suppresses consciousness
,”
Anesthesiology
102
,
447
471
(
2005
).
74.
Kahneman
,
D.
,
Thinking Fast and Slow
(
Farrar, Straus and Giroux
,
New York
,
2011
).
75.
Kahneman
,
D.
and
Tversky
,
A.
, “
Prospect theory: an analysis of decision under risk
,”
Econometrica
47
,
263
91
(
1979
).
76.
Kotchoubey
,
B.
,
Tretter
,
F.
,
Braun
,
H. A.
, et al, “
Methodological problems on the way to integrative human neuroscience
,”
Frontiers Integr. Neurosci.
10
,
1
19
(
2016
).
77.
Stochastic Methods in Neuroscience
, edited by
C.
Laing
and
G. J.
Lord
(
Oxford University Press
,
2010
).
78.
Li
,
Z.
and
Hopfield
,
J. J.
, “
Modeling the olfactory bulb and its neural oscillatory processings
,”
Biol. Cybern.
61
,
379
92
(
1989
).
79.
Libet
,
B.
,
Wright
,
E. W.
, and
Gleason
,
C. A.
, “
Readiness potentials preceding unrestricted “spontaneous” vs. pre-planned voluntary acts
,”
Electroencephalogr. Clin. Neurophysiol.
54
,
322
335
(
1982
).
80.
Libet
,
B.
,
Gleason
,
C. A.
,
Wright
,
E. W.
, and
Pearl
,
D. K.
, “
Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential): The unconscious initiation of a freely voluntary act
,”
Brain
106
,
623
642
(
1983
).
81.
Liljenström
,
H.
, “
Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture
,”
Int. J. Neural Syst.
2
,
1
15
(
1991
).
82.
Liljenström
,
H.
, “
Autonomous learning with complex dynamics
,”
Intl. J. Intell. Syst.
10
,
119
153
(
1995
).
83.
Liljenström
,
H.
, “
Global effects of fluctuations in neural information processing
,”
Int. J. Neural Syst.
7
,
497
505
(
1996
).
84.
Liljenström
,
H.
, “
Cognition and the efficiency of neural processes
,” in
Matter Matters? On the Material Basis of the Cognitive Activity of the Mind
, edited by
P.
Århem
,
H.
Liljenström
, and
U.
Svedin
(
Springer
,
Berlin
,
1997
), pp.
177
213
.
85.
Liljenström
,
H.
, “
Neural stability and flexibility - A computational approach
,”
Neuropsychopharmacology
28
,
S64
S73
(
2003
).
86.
Liljenström
,
H.
, “
Inducing Transitions in Mesoscopic Brain Dynamics
,” in
Modeling Phase Transitions in the Brain
, edited by
D. A.
Steyn-Ross
and
M. L.
Steyn-Ross
(
Springer
,
New York
,
2010
), pp.
147
175
.
87.
Liljenström
,
H.
, “
Intention and attention in consciousness dynamics and evolution
,”
J. Cosmology
14
,
4848
4858
(
2011
).
88.
Liljenström
,
H.
, “
Mesoscopic brain dynamics
,”
Scholarpedia
7
(
9
),
4601
(
2012
).
89.
Liljenström
,
H.
, “
Free will and spatiotemporal neurodynamics
,” in
Advances in Cognitive Neurodynamics (IV)
, edited by
H.
Liljenström
(
Springer
,
Berlin
,
2015
), pp.
99
106
.
90.
Liljenström
,
H.
, “
4711- Is grandma a strange attractor?
,”
Chaos Complexity Lett.
11
,
49
79
(
2017
).
91.
Liljenström
,
H.
, “
Intentionality as a driving force
,”
J. Consc. Studies
25
,
206
229
(
2018
).
92.
Liljenström
,
H.
and
Hasselmo
,
M. E.
, “
Acetylcholine and cortical oscillatory dynamics
,” in
Computation and Neural Systems
, edited by
F.
Eeckman
and
J. M.
Bower
(
Kluwer
,
1993
), pp.
523
530
.
93.
Liljenström
,
H.
and
Hasselmo
,
M. E.
, “
Cholinergic modulation of cortical oscillatory dynamics
,”
J. Neurophysiol.
74
,
288
297
(
1995
).
94.
Liljenström
,
H.
and
Wu
,
X.
, “
Noise and Neuromodulatory Effects On A Cortical Associative Memory
,” Proc. World Congress on Neural Networks, Orlando, Jun. 28–Jul 2, (IEEE, 1994), Vol. 2, pp. 970–975, ISBN: 0-7803-1901-X, available at http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3013.
95.
Liljenström
,
H.
and
Århem
,
P.
, “
Investigating amplifying and controlling mechanisms for random events in neural systems
,” in
Computational Neuroscience
, edited by
J. M.
Bower
(
Plenum Press
,
New York
,
1997
), pp.
711
716
.
97.
Liljenström
,
H.
and
Hassannejad Nazir
,
A.
, “
Decisions and Downward Causation in Neural Systems
,” in
Advances in Cognitive Neurodynamics (V)
, edited by
R.
Wang
and
X.
Pan
(
Springer
,
Singapore
,
2016
), pp.
161
167
. ISBN: 978-981-10-0205-2,
98.
Longtin
,
A.
, “
Neuronal noise
,”
Scholarpedia
8
(
9
),
1618
(
2013
).
99.
Maoz
,
U.
,
Yaffe
,
G.
,
Koch
,
C.
, and
Mudrik
,
L.
, “
Neural precursors of decisions that matter – an ERP study of deliberate versus arbitrary choices
,”
Cold Spring Harbor Lab, BioRxiv.
(
2017
).
100.
McDonnel
,
M.
and
Ward
,
L.
, “
The benefits of noise in neural systems: bridging theory and experiment
,”
Nat. Rev. Neurosci.
12
,
415
426
(
2011
).
101.
Monod
,
J.
,
Chance and Necessity: Essay on the Natural Philosophy of Modern Biology
(
Alfred A. Knopf
,
New York
,
1971
).
102.
Moss
,
F.
and
Braun
,
H.
, “
Do neurons recognize patterns or rates? One example
,” in
Disorder versus Order in Brain Function – Essays in Theoretical Neurobiology
, edited by
P.
Århem
 et al (
World Scientific
,
Singapore
,
2000
), pp.
117
134
.
103.
Neuro-Informatics and Neural Modelling
,
Handbook of Biological Physics
(edited by
A. J.
Hoff)
, edited by
F.
Moss
and
S.
Gielen
(
Elsevier
,
Amsterdam
,
2001
), Vol.
4
.
104.
Moss
,
F.
,
Ward
,
L. M.
, and
Sannita
,
W. G.
, “
Stochastic resonance and sensory information processing: a tutorial and review of application
,”
Clin. Neurophysiol.
115
(
2
),
267
81
(
2004
).
105.
Noble
,
D.
, “
A theory of biological relativity: no privileged level of causation
,”
Interface Focus
2
,
55
64
(
2012
).
106.
Pei
,
X.
and
Moss
,
F.
, “
Characterization of low-dimensional dynamics in the crayfish caudal receptor
,”
Nature
379
,
618
621
(
1996a
).
107.
Pei
,
X.
and
Moss
,
F.
, “
Detecting low dimensional dynamics in biological experiments
,”
Int. J. Neur. Systems
7
,
429
435
(
1996b
).
108.
Neurodynamics of Cognition and Consciousness
, edited by
L. I.
Perlovsky
and
R.
Kozma
(
Springer
,
2007
).
109.
Pierson
,
D.
and
Moss
,
F.
, “
Detecting periodic unstable points in noisy chaotic and limit cycle attractors with applications to biology
,”
Phys. Rev. Lett.
75
,
2124
2127
(
1995
).
110.
Popper
,
K.
,
The Open Universe: An Argument for Indeterminism
(
Routledge
,
1988
).
111.
Postnova
,
S.
,
Voigt
,
K.
, and
Braun
,
H. A.
, “
A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin
,”
J. Biol. Rhythms
24
,
523
535
(
2009
).
112.
Postnova
, et al, “
Modelling the hypothalamic control of thalamic synchronization along the sleep-wake cycles
,” in
Advances in Cognitive Neurodynamics (II)
, edited by
R.
Wang
and
F.
Gu
(
Springer
,
Heidelberg
,
2011
).
113.
Rapp
,
P. E.
, “
Chaos in the neurosciences: cautionary tales from the frontier
,”
Biologist
40
,
89
94
(
1993
).
114.
Russell
,
D. F.
,
Wilkens
,
L. A.
, and
Moss
,
F.
, “
Use of behavioural stochastic resonance by paddle fish for feeding
,”
Nature
402
,
291
4
(
1999
).
115.
Schäfer
,
K.
,
Braun
,
H. A.
, and
Rempe
,
L.
, “
Discharge pattern analysis suggests existence of a low-threshold calcium channel in cold receptors
,”
Experientia
47
,
47
50
(
1991
).
116.
Schrödinger
,
E.
,
What is Life?
(
Cambridge University Press
,
Cambridge
,
1944
).
117.
Schurger
,
A.
,
Sitt
,
J. D.
, and
Dehaene
,
S.
, “
An accumulator model for spontaneous neural activity prior to self-initiated movement
,”
Proc. Natl. Acad. Sci.
109
,
E2904
E2913
(
2012
).
118.
Skarda
,
C. A.
and
Freeman
,
W. J.
, “
How brains make chaos in order to make sense of the world
,”
Behav. Brain Sci.
10
(
2
),
161
195
(
1987
).
119.
Smetters
,
D. K.
, “
Noise in neural computation
,” in
Disorder versus Order in Brain Function – Essays in Theoretical Neurobiology
, edited by
P.
Århem
, et al (
World Scientific
,
Singapore
,
2000
), pp.
107
116
.
120.
So
,
P.
and
Ott
,
E.
, “
Controlling chaos using time delay coordinates via stabilization of periodic orbits
,”
Phys. Rev. E
51
,
2955
(
1995
).
121.
Soon
,
C. S.
,
Brass
,
M.
,
Heinze
,
H.-J.
, and
Haynes
,
J.-D.
, “
Unconscious determinants of free decisions in the human brain
,”
Nat. Neurosci.
11
,
543
45
(
2008
).
122.
Modeling Phase Transitions in the Brain
, edited by
A.
Steyn-Ross
and
M.
Steyn-Ross
(
Springer
,
2010
).
123.
Sutton
,
R. S.
and
Barto
,
A. G.
,
Reinforcement Learning
(
MIT Press
,
Cambridge
,
MA
,
1998
).
124.
Tchaptchet
,
A.
,
Jin
,
W.
, and
Braun
,
H. A.
, “
Diversity and noise in neurodynamics across different functional levels
,” in
Advances in Cognitive Neurodynamics (V)
, edited by
R.
Wang
and
X.
Pan
(
Springer
,
Singapore
,
2016
).
125.
Tsuda
,
I.
, “
Toward an interpretation of dynamics neural activity in terms of chaotic dynamical systems
,”
Behav. Brain Sci.
24
,
793
847
(
2001
).
126.
Van Inwagen
,
P.
Thinking About Free Will
. (
Cambridge University Press,
2017
). See also P. van Inwagen’s presentation at the Agora Conference on Free Will, Sigtuna, Sweden, 25–28 June 2017, see http://agoraforbiosystems.se/conferences/agora-conference-on-free-will/.
127.
Wiesenfeld
,
K.
and
Moss
,
F.
, “
Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs
,”
Nature
373
,
33
36
(
1995
).
128.
Wu
,
X.
and
Liljenström
,
H.
, “
Regulating the nonlinear dynamics of the olfactory cortex
,”
Network
5
,
47
60
(
1994
).
You do not currently have access to this content.