Cellular information processing is generally attributed to the complex networks of genes and proteins that regulate cell behavior. It is still unclear, however, what are the main features of those networks that allow a cell to encode and interpret its ever changing environment. Here, we address this question by studying the computational capabilities of the transcriptional regulatory networks of five evolutionary distant organisms. We identify in all cases a cyclic recurrent structure, formed by a small core of genes, that is essential for dynamical encoding and information integration. The recent history of the cell is projected nonlinearly into this recurrent reservoir of nodes, where it is encoded by its transient dynamics, while the rest of the network forms a readout layer devoted to decode and interpret the high-dimensional dynamical state of the recurrent core. In that way, gene regulatory networks act as echo-state networks that perform optimally in standard memory-demanding tasks, with most of their memory residing in the recurrent reservoir. The biological significance of these results is analyzed in the particular case of the bacterium Escherichia coli. Our work thus suggests that recurrent nonlinear dynamics is a key element for the processing of complex time-dependent information by cells.

1.
S.
Postnova
,
K.
Voigt
, and
H. A.
Braun
, “
A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin
,”
J. Biol. Rhythms
24
,
523
535
(
2009
).
2.
S. S.
Golden
,
M.
Ishiura
,
C. H.
Johnson
, and
T.
Kondo
, “
Cyanobacterial circadian rhythms
,”
Annu. Rev. Plant Physiol. Plant Mol. Biol.
48
,
327
354
(
1997
).
3.
T.
Mori
and
C. H.
Johnson
, “
Circadian programming in cyanobacteria
,”
Semin. Cell Dev. Biol.
12
,
271
278
(
2001
).
4.
I.
Tagkopoulos
,
Y.-C.
Liu
, and
S.
Tavazoie
, “
Predictive behavior within microbial genetic networks
,”
Science
320
,
1313
1317
(
2008
).
5.
A.
Mitchell
,
G. H.
Romano
,
B.
Groisman
,
A.
Yona
,
E.
Dekel
,
M.
Kupiec
,
O.
Dahan
, and
Y.
Pilpel
, “
Adaptive prediction of environmental changes by microorganisms
,”
Nature
460
,
220
224
(
2009
).
6.
A.
Rodaki
,
I. M.
Bohovych
,
B.
Enjalbert
,
T.
Young
,
F. C.
Odds
,
N. A.
Gow
, and
A. J.
Brown
, “
Glucose promotes stress resistance in the fungal pathogen candida albicans
,”
Mol. Biol. Cell
20
,
4845
4855
(
2009
).
7.
S.
Schild
,
R.
Tamayo
,
E. J.
Nelson
,
F.
Qadri
,
S. B.
Calderwood
, and
A.
Camilli
, “
Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment
,”
Cell Host Microbe
2
,
264
277
(
2007
); arXiv:NIHMS150003.
8.
R.
Dhar
,
R.
Sägesser
,
C.
Weikert
, and
A.
Wagner
, “
Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation
,”
Mol. Biol. Evol.
30
,
573
588
(
2013
).
9.
D. M.
Wolf
,
L.
Fontaine-Bodin
,
I.
Bischofs
,
G.
Price
,
J.
Keasling
, and
A. P.
Arkin
, “
Memory in microbes: Quantifying history-dependent behavior in a bacterium
,”
PloS One
3
,
e1700
(
2008
).
10.
T. I.
Lee
,
N. J.
Rinaldi
,
R.
François
,
D. T.
Odom
,
Z.
Bar-Joseph
,
G. K.
Gerber
,
N. M.
Hannett
,
C. T.
Harbison
,
C. M.
Thompson
,
I.
Simon
,
J.
Zeitlinger
,
E. G.
Jennings
,
H. L.
Murray
,
D. B.
Gordon
,
B.
Ren
,
J. J.
Wyrick
,
J.-B.
Tagne
,
T. L.
Volkert
,
E.
Fraenkel
,
D. K.
Gifford
, and
R. A.
Young
, “
Transcriptional regulatory networks in Saccharomyces cerevisiae
,”
Science
298
,
799
804
(
2009
).
11.
A.
Martínez-Antonio
and
J.
Collado-Vides
, “
Identifying global regulators in transcriptional regulatory networks in bacteria
,”
Curr. Opin. Microbiol.
6
,
482
489
(
2003
).
12.
D.
Verstraeten
,
B.
Schrauwen
,
M.
D’Haene
, and
D.
Stroobandt
, “
An experimental unification of reservoir computing methods
,” Echo State Networks and Liquid State Machines,
Neural Netw.
20
,
391
403
(
2007
).
13.
H.
Jaeger
, “The ‘echo state’ approach to analysing and training recurrent neural networks,” Tech. Rep. (Fraunhofer Institute for Autonomous Intelligent Systems, 2001).
14.
W.
Maass
,
T.
Natschlager
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
2560
(
2002
).
15.
D. V.
Buonomano
and
W.
Maass
, “
State-dependent computations: Spatiotemporal processing in cortical networks
,”
Nat. Rev. Neurosci.
10
,
113
125
(
2009
).
16.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
17.
N.
Sierro
,
Y.
Makita
,
M.
de Hoon
, and
K.
Nakai
, “
DBTBS: A database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information
,”
Nucleic Acids Res.
36
,
D93
D96
(
2008
).
18.
I. M.
Keseler
et al., “
EcoCyc: A comprehensive database of Escherichia coli biology
,”
Nucleic Acids Res.
39
,
D583
D590
(
2011
).
19.
M. C.
Teixeira
et al., “
The YEASTRACT database: An upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae
,”
Nucleic Acids Res.
42
,
D161
D166
(
2014
).
20.
S.
Roy
et al., “
Identification of functional elements and regulatory circuits by Drosophila modENCODE
,”
Science (New York, N.Y.)
330
,
1787
1797
(
2010
).
21.
M. B.
Gerstein
et al., “
Architecture of the human regulatory network derived from ENCODE data
,”
Nature
489
,
91
100
(
2012
).
22.
A.
Rodan
and
P.
Tino
, “
Minimum complexity echo state network
,”
IEEE Trans. Neural Netw.
22
,
131
144
(
2011
).
23.
H.
Jaeger
, “
Adaptive nonlinear system identification with echo state networks
,”
Adv. Neural Inf. Process. Syst.
15
,
609
616
(
2002
).
24.
L.
Appeltant
,
M.
Soriano
,
G.
Van der Sande
,
J.
Danckaert
,
S.
Massar
,
J.
Dambre
,
B.
Schrauwen
,
C.
Mirasso
, and
I.
Fischer
, “
Information processing using a single dynamical node as complex system
,”
Nat. Commun.
2
,
468
(
2011
); arXiv:1111.7219.
25.
A. F.
Atiya
and
A. G.
Parlos
, “
New results on recurrent network training: Unifying the algorithms and accelerating convergence
,”
IEEE Trans. Neural Netw.
11
,
697
709
(
2000
).
26.
F.
Wyffels
,
B.
Schrauwen
, and
D.
Stroobandt
, “
Stable output feedback in reservoir computing using ridge regression
,” in
Artificial Neural Networks - ICANN 2008
, Lecture Notes in Computer Science, Vol. 5163, edited by
V.
Kůrková
,
R.
Neruda
, and
J.
Koutník
(
Springer
,
Berlin
,
2008
), pp.
808
817
.
27.
H.
Jaeger
, “Short term memory in echo state networks,” Tech. Rep. (German National Research Center for Information Technology, 2001).
28.
J.
Boedecker
,
O.
Obst
,
J. T.
Lizier
,
N. M.
Mayer
, and
M.
Asada
, “
Information processing in echo state networks at the edge of chaos
,”
Theory Biosci.
131
,
205
213
(
2012
).
29.
F.
Jiang
,
H.
Berry
, and
M.
Schoenauer
, “
Supervised and evolutionary learning of echo state networks
,” in
Parallel Problem Solving from Nature
, edited by
G.
Rudolph
,
T.
Jansen
,
N.
Beume
,
S.
Lucas
, and
C.
Poloni
(
Springer
,
Berlin
,
2008
), pp.
215
224
.
30.
C.
Gagn
, “
DEAP: Evolutionary algorithms made easy
,”
J. Mach. Learn. Res.
13
,
2171
2175
(
2012
).
31.
D.
Bray
, “
Protein molecules as computational elements in living cells
,”
Nature
376
,
307
(
1995
).
32.
B.
Scheres
and
W. H.
Van Der Putten
, “
The plant perceptron connects environment to development
,”
Nature
543
,
337
345
(
2017
).
33.
S.
McGregor
,
V.
Vasas
,
P.
Husbands
, and
C.
Fernando
, “
Evolution of associative learning in chemical networks
,”
PLoS Comput. Biol.
8
,
e1002739
(
2012
).
34.
M.
Sorek
,
N. Q.
Balaban
, and
Y.
Loewenstein
, “
Stochasticity, bistability and the wisdom of crowds: A model for associative learning in genetic regulatory networks
,”
PLoS Comput. Biol.
9
,
e1003179
(
2013
).
35.
R.
Bates
,
O.
Blyuss
,
A.
Alsaedi
, and
A.
Zaikin
, “
Effect of noise in intelligent cellular decision making
,”
PloS One
10
,
e0125079
(
2015
).
36.
S.
Filicheva
,
A.
Zaikin
, and
O.
Kanakov
, “
Dynamical decision making in a genetic perceptron
,”
Phys. D: Nonlinear Phenom.
318
,
112
115
(
2016
).
37.
B.
Jones
,
D.
Stekel
,
J.
Rowe
, and
C.
Fernando
, “
Is there a liquid state machine in the bacterium escherichia coli?
,” in
2007 IEEE Symposium on Artificial Life
(
IEEE
,
2007
), pp.
187
191
.
38.
T.
Saigusa
,
A.
Tero
,
T.
Nakagaki
, and
Y.
Kuramoto
, “
Amoebae anticipate periodic events
,”
Phys. Rev. Lett.
100
,
1
4
(
2008
).
39.
T. M.
Hennessey
,
W. B.
Rucker
, and
C. G.
McDiarmid
, “
Classical conditioning in paramecia
,”
Animal Learn. Behav.
7
,
417
423
(
1979
).
40.
H. L.
Armus
,
A. R.
Montgomery
, and
R. L.
Gurney
, “
Discrimination learning and extinction in Paramecia (P. caudatum)
,”
Psychol. Rep.
98
,
705
711
(
2006
).
41.
L.
Büsing
,
B.
Schrauwen
, and
R.
Legenstein
, “
Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons
,”
Neural Comput.
22
,
1272
1311
(
2010
).
42.
J.
Dambre
,
D.
Verstraeten
,
B.
Schrauwen
, and
S.
Massar
, “
Information processing capacity of dynamical systems
,”
Sci. Rep.
2
,
514
(
2012
).
43.
G.
Tanaka
,
R.
Nakane
,
T.
Yamane
,
D.
Nakano
,
S.
Takeda
,
S.
Nakagawa
, and
A.
Hirose
, “
Exploiting heterogeneous units for reservoir computing with simple architecture
,” in
International Conference on Neural Information Processing
(
Springer
,
2016
), Vol. 1, pp.
187
194
.
44.
C.
Gallicchio
and
A.
Micheli
, “Deep reservoir computing: A critical analysis,” in European symposium on artificial neural networks, computational intelligence and machine learning, April (i6doc.com, 2016), pp. 27–29.
You do not currently have access to this content.