Spontaneous activity of vascular smooth muscle is present in small arteries and some venous tissues like the hepatic portal vein. Whereas the ability to generate rhythmic membrane potential changes is expressed in a high number of primary oscillators, the generation of physiological tone and phasic activity requires synchronization of specialized pacemaker activity (Interstitial Cajal-like cells) by intercellular propagation and regeneration of excitation or a strong coupling mechanism of smooth muscle cells. The aim of this study was to deduce oscillator coupling by analyzing the spatiotemporal homogeneity of calcium oscillations within a native tissue preparation. Portal vein tissue was loaded with a calcium-sensitive dye (Fluo-3). By combining confocal microscopy and computation of spatial auto- and cross-correlation of the calcium signals, temporal and spatial coupling between cells was characterized. Spontaneous oscillations of calcium signals were measured at different predefined regions of interest. Cross-correlation analysis of these signals revealed that their damping was very similar in all directions of the investigated z-plane. In single experiments, improved cell-to-cell coupling was seen when noradrenaline (1–10 μM) was added to the bath-solution. With the chosen parameters of frame refresh, the velocity of signal propagation was faster than the maximum detectable velocity, but it could be estimated to exceed 0.1 mm/s. Correlative Network Analysis is a new and very useful tool to determine the functional coupling parameters of quasi-homogenous biological networks and their temporal changes. The action and significance of pharmacological modulators can be well studied on cellular and functional aspects with this newly introduced technique in biological sciences.

1.
Th.
Noack
,
P.
Deitmer
, and
K.
Golenhofen
,
Pflugers Arch.
416
,
467
(
1990
).
2.
T. B.
Bolton
,
D. V.
Gordienko
,
O. V.
Povstyan
,
M. I.
Harhun
, and
V.
Pucovsky
,
Cell Calcium
35
,
643
(
2004
).
3.
C.
Aalkjaer
and
H.
Nilsson
,
Br. J. Pharmacol.
144
,
605
(
2005
).
4.
V. V.
Matchkov
,
A.
Rahman
,
H.
Peng
,
H.
Nilsson
, and
C.
Aalkjaer
,
Br. J. Pharmacol.
142
,
961
(
2004
).
5.
R.
Lees-Green
,
P.
Du
,
G.
O'Grady
,
A.
Beyder
,
G.
Farrugia
, and
A. J.
Pullan
,
Front. Physiol.
2
,
29
(
2011
).
6.
K.
Golenhofen
and
D.
von Loh
,
Pflugers Arch.
314
,
312
(
1970
).
7.
K.
Golenhofen
and
N.
Hermstein
,
J. Physiol.
231
,
14P
15P
(
1973
).
8.
L. T.
Lubomirov
,
K.
Reimann
,
D.
Metzler
,
V.
Hasse
,
R.
Stehle
,
M.
Ito
,
D. J.
Hartshorne
,
H.
Gagov
,
G.
Pfitzer
, and
R.
Schubert
,
Circ. Res.
98
,
1159
(
2006
).
9.
N. M.
Rummery
and
C. E.
Hill
,
Clin. Exp. Pharmacol. Physiol.
31
,
659
(
2004
).
10.
D.
Begandt
,
A.
Bader
,
L.
Dreyer
,
N.
Eisert
,
T.
Reeck
, and
A.
Ngezahayo
,
J. Cell Commun. Signal.
7
,
151
(
2013
).
11.
A.
Kapela
,
J.
Parikh
, and
N. M.
Tsoukias
,
Biophys. J.
102
,
211
(
2012
).
12.
S. P.
Parsons
and
J. D.
Huizinga
,
Front. Neurosci.
10
,
19
(
2016
).
13.
A.
Corrias
,
P.
Pathmanathan
,
D. J.
Gavaghan
, and
M. L.
Buist
,
Integr. Biol.
4
,
192
(
2012
).
14.
T. M.
Griffith
and
D. H.
Edwards
,
Am. J. Physiol.
266
,
H1801
H1811
(
1994
).
15.
M. Z.
Malik
,
S.
Ali
,
M. J.
Alam
,
G. R.
Devi
,
Ravins
,
R.
Ishrat
, and
R. K. B.
Singh
,
J. Nanosci. Nanotechnol.
12
,
8303
(
2012
).
16.
J. D.
Huizinga
,
S. P.
Parsons
,
J.-H.
Chen
,
A.
Pawelka
,
M.
Pistilli
,
C.
Li
,
Y.
Yu
,
P.
Ye
,
Q.
Liu
,
M.
Tong
,
Y. F.
Zhu
, and
D.
Wei
,
Am. J. Physiol. Cell Physiol.
309
,
C403
C414
(
2015
).
17.
A. L.
Hodgkin
and
A. F.
Huxley
,
J. Physiol.
117
,
500
(
1952
).
18.
A. L.
Hodgkin
and
A. F.
Huxley
,
Proc. R. Soc. Lond. B Biol. Sci.
140
,
177
(
1952
).
19.
T.
Kiyosue
,
M.
Arita
,
H.
Muramatsu
,
A. J.
Spindler
, and
D.
Noble
,
J. Physiol.
468
,
85
(
1993
).
21.
E.
Bozler
,
Am. J. Physiol.
122
,
614
(
1938
).
22.
M.
Imamura
,
Y.
Sugino
,
X.
Long
,
O. J.
Slivano
,
N.
Nishikawa
,
N.
Yoshimura
, and
J. M.
Miano
,
J. Cell. Physiol.
228
,
1819
(
2013
).
23.
A.
Salameh
,
C.
Frenzel
,
A.
Boldt
,
B.
Rassler
,
I.
Glawe
,
J.
Schulte
,
K.
Mühlberg
,
H.-G.
Zimmer
,
D.
Pfeiffer
, and
S.
Dhein
,
FASEB J.
20
,
365
(
2006
).
25.
R.
Patejdl
and
T.
Noack
,
Trace Elem. Electrolytes
27
,
202
(
2010
).
26.
C.
de Wit
,
F.
Roos
,
S. S.
Bolz
,
S.
Kirchhoff
,
O.
Krüger
,
K.
Willecke
, and
U.
Pohl
,
Circ. Res.
86
,
649
(
2000
).
27.
S.
Verheule
,
M. J.
van Kempen
,
P. H.
te Welscher
,
B. R.
Kwak
, and
H. J.
Jongsma
,
Circ. Res.
80
,
673
(
1997
).
29.
J. D.
Huizinga
,
L. W.
Liu
,
M. G.
Blennerhassett
,
L.
Thuneberg
, and
A.
Molleman
,
Experientia
48
,
932
(
1992
).
30.
R.
Wei
,
S. P.
Parsons
, and
J. D.
Huizinga
,
Exp. Physiol.
102
,
329
(
2017
).
31.
M. J.
Berridge
,
Biochim. Biophys. Acta
1793
,
933
(
2009
).
32.
M. D.
Bootman
and
M. J.
Berridge
,
Curr. Biol.
6
,
855
(
1996
).
33.
R. T.
Dean
and
W. T. M.
Dunsmuir
,
Behav. Res. Methods
48
,
783
(
2016
).
34.
S. F.
Farmer
,
D. M.
Halliday
,
B. A.
Conway
,
J. A.
Stephens
, and
J. R.
Rosenberg
,
J. Neurosci. Methods
74
,
175
(
1997
).
35.
D. G.
Welsh
and
S. S.
Segal
,
Am. J. Physiol.
274
,
H178
H186
(
1998
).
36.
R.
Patejdl
,
P.
Noack
,
H. H.
Hopp
,
A.
Weston
, and
T.
Noack
,
Trace Elem. Electrolytes
22
,
248
(
2005
).
37.
M.
Sell
,
W.
Boldt
, and
F.
Markwardt
,
Cell Calcium
32
,
105
(
2002
).
38.
S. S.
Bolz
,
C.
de Wit
, and
U.
Pohl
,
Br. J. Pharmacol.
128
,
124
(
1999
).
39.
A.
Schuster
,
H.
Oishi
,
J. L.
Bény
,
N.
Stergiopulos
, and
J. J.
Meister
,
Am. J. Physiol.
280
,
H1088
H1096
(
2001
).
40.
C.
Depry
,
S.
Mehta
, and
J.
Zhang
,
Pflugers Arch.
465
,
373
(
2013
).
41.
M. I.
Harhun
,
V.
Pucovský
,
O. V.
Povstyan
,
D. V.
Gordienko
, and
T. B.
Bolton
,
J. Cell. Mol. Med.
9
,
232
(
2005
).
42.
H.
Peng
,
V.
Matchkov
,
A.
Ivarsen
,
C.
Aalkjaer
, and
H.
Nilsson
,
Circ. Res.
88
,
810
(
2001
).
You do not currently have access to this content.