We consider a system of coupled swarmalators moving in two dimensional space and explore its collective behavior. Here the swarmalators represent the oscillators that can sync and swarm in space, following the previous study [O’Keeffe et al., Nat. Commun., 8, 1504 (2017)]. The internal state of each swarmalator is represented by its phase angle, and the swarmalators are free to move in the plane according to an equation of motion where the phase and spatial dynamics are coupled with each other. In particular, the phase coupling between the swarmalators is attractive (positive) one, so the coupling makes the swarmalators have their phase difference minimized. The collective behavior of the system is found to be different depending on the extent of the interplay between the phase and spatial dynamics: Specifically, when the extent of the interplay between the phase and spatial dynamics is so weak as to be negligible, the phase dynamics of our system recovers that of the conventional mean-field XY model. On the other hand, when a certain extent of the interplay is present, the system is found to exhibit the correlated phase where the overall order does not occur. Interestingly, it is found that the correlated phase is the same as the active phase wave found in the system of swarmalators with repulsive phase coupling [O’Keeffe et al., Nat. Commun., 8, 1504 (2017)]. We also find that the system exhibits two different phase transitions: One is the transition from the sync state to the active phase wave state, and the other one is the transition from the active phase wave state to the async state. We perform the finite-size scaling analysis and investigate the transition nature.

1.
K. P.
O’Keeffe
,
H.
Hong
, and
S. H.
Strogatz
,
Nat. Commun.
8
,
1504
(
2017
).
2.
I.
Aihara
,
H.
Kitahata
,
K.
Yoshikawa
, and
K.
Aihara
,
Artif. Life Robot
12
,
29
(
2008
).
3.
D.
Pazó
and
E.
Montbrió
,
Phys. Rev. X
4
,
011009
(
2014
); T. B. Luke, E. Barreto, and P. So, 8,
145
(
2014
); C. R. Laing, 90,
010901
(
2014
); E. Montbrió, D. Pazó, and A. Roxin, 5,
021028
(
2015
); K. P. O’Keeffe, and S. H. Strogatz, 93,
0622203
(
2016
).
4.
Z.
Néda
,
E.
Ravasz
,
Y.
Brechet
,
T.
Vicsek
, and
A.-L.
Barabási
,
Nature
403
,
849
(
2000
); Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A.-L. Barabási, 61,
6987
(
2000
).
6.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
Berlin
,
1984
).
7.
S. H.
Strogatz
,
Physica D
143
,
1
(
2000
); Sync (Hyperion, New York, 2003).
8.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
9.
J. A.
Acebron
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
), and see also the references therein.
10.
F.
Peruani
,
E. M.
Nicola
, and
L. G.
Morelli
,
New J. Phys.
12
,
093029
(
2010
); R. Großmann, F. Peruani, and M. Bär, 93, 040102(R) (2016); D. Levis, I. Pagonabarraga, and A. Díaz-Guilera, 7, 011028 (2017).
11.
J. M.
Kosterlitz
,
J. Phys. C: Solid State Phys.
7
,
1046
(
1974
); J. M. Kosterlitz and D. J. Thouless, ibid.6, 1181 (1974).
12.
M.
Antoni
and
S.
Ruffo
,
Phys. Rev. E
52
,
2361
(
1995
); B. J. Kim, H. Hong, P. Holme, G. S. Jeon, P. Minnhagen, and M. Y. Choi, Phys. Rev. E64, 056135 (2001).
13.
See, e.g.,
R. L.
Burden
and
J. D.
Faires
,
Numerical Analysis
(
Brooks/Cole
,
Pacific Grove
,
1997
), p.
280
.
14.
M. E.
Fisher
and
M. N.
Barber
,
Phys. Rev. Lett.
28
,
1516
(
1972
).
15.
K.
Binder
,
M.
Nauenberg
,
V.
Privman
, and
A. P.
Young
,
Phys. Rev. B
31
,
1498
(
1985
).
16.
H.
Hong
,
H.
Chaté
,
L.-H.
Tang
, and
H.
Park
,
Phys. Rev. E
93
,
022219
(
2016
).
You do not currently have access to this content.