Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state (“active” or “passive”) threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

1.
Spreading Dynamics in Social Systems
, edited by
S.
Lehmann
and
Y.-Y.
Ahn
(
Springer-Verlag
,
forthcoming
), https://socialcontagionbook.github.io.
2.
T. W.
Valente
,
Network Models of the Diffusion of Innovations
(
Hampton Press
,
1995
).
3.
E. M.
Rogers
,
Diffusion of Innovations
, 3rd ed. (
Free Press
,
1983
).
4.
M. A.
Porter
and
J. P.
Gleeson
,
Dynamical Systems on Networks: A Tutorial (Frontiers in Applied Dynamical Systems: Reviews and Tutorials)
(
Springer
,
2016
), Vol.
4
.
5.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
6.
J.
Borge-Holthoefer
,
R. A.
Baños
,
S.
González-Bailón
, and
Y.
Moreno
, “
Cascading behavior in complex socio-technical networks
,”
J. Complex Networks
1
,
3
24
(
2013
).
7.
K.
Dey
,
S.
Kaushik
, and
L. V.
Subramaniam
, “
Literature survey on interplay of topics, information diffusion and connections on social networks
,” preprint arXiv:1706.00921 (
2017
).
8.
D.
Guilbeault
,
J.
Becker
, and
D.
Centola
, “
Complex contagions: A decade in review
,” in
Spreading Dynamics in Social Systems
, edited by
S.
Lehmann
and
Y.-Y.
Ahn
(
Springer-Verlag
, forthcoming), https://socialcontagionbook.github.io.
9.
A. G.
Haldane
and
R. M.
May
, “
Systemic risk in banking ecosystems
,”
Nature
469
,
351
355
(
2011
).
10.
M.
Granovetter
, “
Threshold models of collective behavior
,”
Am. J. Sociol.
83
,
1420
1443
(
1978
).
11.
D. J.
Watts
, “
A simple model of global cascades on random networks
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
5766
5771
(
2002
).
12.
D.
Kempe
,
J.
Kleinberg
, and
E.
Tardos
, “
Maximizing the spread of influence through a social network
,”
in Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, KDD '03 (ACM, New York, NY, USA,
2003
), pp.
137
146
.
13.
P. S.
Dodds
and
D. J.
Watts
, “
A generalized model of social and biological contagion
,”
J. Theor. Biol.
232
,
587
604
(
2005
).
14.
D.
Centola
and
M.
Macy
, “
Complex contagions and the weakness of long ties
,”
Am. J. Sociol.
113
,
702
734
(
2007
).
15.
N. A.
Christakis
and
J. H.
Fowler
, “
Social contagion theory: Examining dynamic social networks and human behavior
,”
Stat. Med.
32
,
556
577
(
2013
).
16.
M. O.
Jackson
and
D.
López-Pintado
, “
Diffusion and contagion in networks with heterogeneous agents and homophily
,”
Network Sci.
1
,
49
67
(
2013
).
17.
M. O.
Jackson
and
Y.
Zenou
, “
Games on networks
,” in
Handbook of Game Theory
, edited by
P.
Young
and
S.
Zamir
(
Elsevier
,
2014
), Vol.
4
, pp.
95
163
.
18.
E.
Laurence
,
J.-G.
Young
,
S.
Melnik
, and
L. J.
Dubé
, “
Exact analytical solution of irreversible binary dynamics on networks
,” preprint arXiv:1711.02721 (
2017
).
19.
C.
Castellano
,
S.
Fortunato
, and
V.
Loreto
, “
Statistical physics of social dynamics
,”
Rev. Mod. Phys.
81
,
591
646
(
2009
).
20.
N. A.
Christakis
and
J. H.
Fowler
, “
The spread of obesity in a large social network over 32 years
,”
New England J. Med.
357
,
370
379
(
2007
).
21.
S.
Aral
,
L.
Muchnik
, and
A.
Sundararajan
, “
Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
21544
21549
(
2009
).
22.
J.
Ugander
,
L.
Backstrom
,
C.
Marlow
, and
J.
Kleinberg
, “
Structural diversity in social contagion
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
5962
5966
(
2012
).
23.
S.
Goel
,
A.
Anderson
,
J.
Hofman
, and
D. J.
Watts
, “
The structural virality of online diffusion
,”
Manage. Sci.
62
,
180
196
(
2016
).
24.
D.
Mollison
, “
Spatial contact models for ecological and epidemic spread
,”
J. R. Stat. Soc. Ser. B
39
,
283
326
(
1977
).
25.
M. S.
Helmut Elsinger
and
A.
Lehar
, “
Risk assessment for banking systems
,”
Manage. Sci.
52
,
1301
1314
(
2006
).
26.
D.
Centola
,
R.
Willer
, and
M.
Macy
, “
The emperor's dilemma: A computational model of self-enforcing norms
,”
Am. J. Sociol.
110
,
1009
1040
(
2005
).
27.
H. P.
Young
, “
Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning
,”
Am. Econ. Rev.
99
,
1899
1924
(
2009
).
28.
I. Z.
Kiss
,
J. C.
Miller
, and
P. L.
Simon
,
Mathematics of Epidemics on Networks: From Exact to Approximate Models
(
Springer International Publishing
,
2017
).
29.
D.
Taylor
,
F.
Klimm
,
H. A.
Harrington
,
M.
Kramár
,
K.
Mischaikow
,
M. A.
Porter
, and
P. J.
Mucha
, “
Topological data analysis of contagion maps for examining spreading processes on networks
,”
Nat. Commun.
6
,
7723
(
2015
).
30.
E.
Valdano
,
L.
Ferreri
,
C.
Poletto
, and
V.
Colizza
, “
Analytical computation of the epidemic threshold on temporal networks
,”
Phys. Rev. X
5
,
021005
(
2015
).
31.
J. P.
Gleeson
, “
Binary-state dynamics on complex networks: Pair approximation and beyond
,”
Phys. Rev. X
3
,
021004
(
2013
).
32.
J. P.
Gleeson
, “
Cascades on correlated and modular random networks
,”
Phys. Rev. E
77
,
046117
(
2008
).
33.
T. R.
Hurd
and
J. P.
Gleeson
, “
On Watts' cascade model with random link weights
,”
J. Complex Networks
1
,
25
43
(
2013
).
34.
S.
Melnik
,
J. A.
Ward
,
J. P.
Gleeson
, and
M. A.
Porter
, “
Multi-stage complex contagions
,”
Chaos
23
,
013124
(
2013
).
35.
M.
Zheng
,
L.
, and
M.
Zhao
, “
Spreading in online social networks: The role of social reinforcement
,”
Phys. Rev. E
88
,
012818
(
2013
).
36.
J. P.
Gleeson
,
K. P.
O'Sullivan
,
R. A.
Baños
, and
Y.
Moreno
, “
Effects of network structure, competition and memory time on social spreading phenomena
,”
Phys. Rev. X
6
,
021019
(
2016
).
37.
C.
Borgs
,
M.
Brautbar
,
J.
Chayes
,
S.
Khanna
, and
B.
Lucier
, “
The power of local information in social networks
,” in
Proceedings of the 8th International Workshop on Internet and Network Economics, WINE 2012, Liverpool, UK, December 10–12, 2012
, edited by
P. W.
Goldberg
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2012
), pp.
406
419
.
38.
D.
Centola
, “
The spread of behavior in an online social network experiment
,”
Science
329
,
1194
1197
(
2010
).
39.
J. J.
Ludlam
,
G. J.
Gibson
,
W.
Otten
, and
C. A.
Gilligan
, “
Applications of percolation theory to fungal spread with synergy
,”
J. R. Soc. Interface
9
,
949
956
(
2012
).
40.
G.
Brunori
and
A.
Rossi
, “
Synergy and coherence through collective action: Some insights from wine routes in Tuscany
,”
Sociologia Ruralis
40
,
409
423
(
2000
).
41.
S.
Milgram
,
L.
Bickman
, and
L.
Berkowitz
, “
Note on the drawing power of crowds of different size
,”
J. Pers. Soc. Psychol.
13
,
79
82
(
1969
).
42.
S.
Sudarsanam
,
P.
Holl
, and
A.
Salami
, “
Shareholder wealth gains in mergers: Effect of synergy and ownership structure
,”
J. Bus. Finance Accounting
23
,
673
698
(
1996
).
43.
C.
Ballester
,
Y.
Zenou
, and
A.
Calvó-Armengol
, “
Delinquent networks
,”
J. Eur. Econ. Assoc.
8
,
34
61
(
2010
).
44.
F. J.
Pérez-Reche
,
J. J.
Ludlam
,
S. N.
Taraskin
, and
C. A.
Gilligan
, “
Synergy in spreading processes: From exploitative to explorative foraging strategies
,”
Phys. Rev. Lett.
106
,
218701
(
2011
).
45.
S. N.
Taraskin
and
F. J.
Pérez-Reche
, “
Effects of variable-state neighborhoods for spreading synergystic processes on lattices
,”
Phys. Rev. E
88
,
062815
(
2013
).
46.
D.
Broder-Rodgers
,
F. J.
Pérez-Reche
, and
S. N.
Taraskin
, “
Effects of local and global network connectivity on synergistic epidemics
,”
Phys. Rev. E
92
,
062814
(
2015
).
47.
K.
Chung
,
Y.
Baek
,
D.
Kim
,
M.
Ha
, and
H.
Jeong
, “
Generalized epidemic process on modular networks
,”
Phys. Rev. E
89
,
052811
(
2014
).
48.
Q.-H.
Liu
,
W.
Wang
,
M.
Tang
,
T.
Zhou
, and
Y.-C.
Lai
, “
Explosive spreading on complex networks: The role of synergy
,”
Phys. Rev. E
95
,
042320
(
2017
).
49.
J. C.
Miller
, “
Equivalence of several generalized percolation models on networks
,”
Phys. Rev. E
94
,
032313
(
2016
).
50.
J.
Chalupa
,
P. L.
Leath
, and
G. R.
Reich
, “
Bootstrap percolation on a Bethe lattice
,”
J. Phys. C: Solid State Phys.
12
,
L31
L35
(
1979
).
51.
A.
Grönlund
and
P.
Holme
, “
A network-based threshold model for the spreading of fads in society and markets
,”
Adv. Complex Syst.
8
,
261
273
(
2005
).
52.
J. S.
Juul
and
M. A.
Porter
, “
Hipsters on networks: How a small group of individuals can lead to an anti-establishment majority
,” preprint arXiv:1707.07187 (
2017
).
53.
S.-W.
Oh
and
M. A.
Porter
, “
Complex contagions with timers
,” preprint arXiv:1706.04252 (
2017
).
54.
J.
Leskovec
,
J.
Kleinberg
, and
C.
Faloutsos
, “
Graph evolution: Densification and shrinking diameters
,”
ACM Trans. Knowl. Discovery Data
1
,
2
(
2007
).
55.
A. L.
Traud
,
P. J.
Mucha
, and
M. A.
Porter
, “
Social structure of Facebook networks
,”
Phys. A
391
,
4165
4180
(
2012
).
56.
S.
Gómez
,
J.
Gómez-Gardenes
,
Y.
Moreno
, and
A.
Arenas
, “
Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks
,”
Phys. Rev. E
84
,
036105
(
2011
).
57.
S.
Melnik
,
A.
Hackett
,
M. A.
Porter
,
P. J.
Mucha
, and
J. P.
Gleeson
, “
The unreasonable effectiveness of tree-based theory for networks with clustering
,”
Phys. Rev. E
83
,
036112
(
2011
).
58.
However, the temporal pattern of activation depends on the choice of asynchronous or synchronous updating. One can also generalize the WTM to other models in which the final fraction of active nodes does depend on this choice. For example, if nodes can be activated into different states as a function of their neighbors' states at the time of activation, then the steady-state fraction of nodes in a specific state can depend on whether one updates the nodes synchronously or asynchronously.
59.
The reason for this is as follows. We choose the single seed node uniformly at random from all nodes in a network, and we do not know the degree or the threshold of this node. Consider the fraction gkϕ of nodes with degree k and threshold ϕ that are active, given that the seed is one of these nodes; and then multiply gkϕ by the probability that the seed node has degree k and threshold ϕ. That is, ψkϕ=gkϕp(k,ϕ)=1Np(k,ϕ)p(k,ϕ)=1/N.
60.
J. P.
Gleeson
and
D. J.
Cahalane
, “
Seed size strongly affects cascades on random networks
,”
Phys. Rev. E
75
,
056103
(
2007
).
61.
P. G.
Fennell
,
S.
Melnik
, and
J. P.
Gleeson
, “
Limitations of discrete-time approaches to continuous-time contagion dynamics
,”
Phys. Rev. E
94
,
052125
(
2016
).
62.
B. K.
Fosdick
,
D. B.
Larremore
,
J.
Nishimura
, and
J.
Ugander
, “
Configuring random graph models with fixed degree sequences
,”
SIAM Rev.
(in press);
B. K.
Fosdick
,
D. B.
Larremore
,
J.
Nishimura
, and
J.
Ugander
, preprint arXiv:1608.00607.
63.
A. L.
Traud
,
E. D.
Kelsic
,
P. J.
Mucha
, and
M. A.
Porter
, “
Comparing community structure to characteristics in online collegiate social networks
,”
SIAM Rev.
53
,
526
543
(
2011
).
64.
E.
Ben-Jacob
,
O.
Schochet
,
A.
Tenenbaum
,
I.
Cohen
,
A.
Czirok
,
T.
Vicsek
 et al, “
Generic modelling of cooperative growth patterns in bacterial colonies
,”
Nature
368
,
46
49
(
1994
).
65.
L. A.
Liotta
and
E. C.
Kohn
, “
The microenvironment of the tumour–host interface
,”
Nature
411
,
375
379
(
2001
).
66.
M.
De Domenico
,
C.
Granell
,
M. A.
Porter
, and
A.
Arenas
, “
The physics of spreading processes in multilayer networks
,”
Nat. Phys.
12
,
901
906
(
2016
).
67.
M.
Salehi
,
R.
Sharma
,
M.
Marzolla
,
M.
Magnani
,
P.
Siyari
, and
D.
Montesi
, “
Spreading processes in multilayer networks
,”
IEEE Trans. Network Sci. Eng.
2
,
65
83
(
2015
).
68.
M.
Kivelä
,
A.
Arenas
,
M.
Barthélemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks
,”
J. Complex Networks
2
,
203
271
(
2014
).
69.
P.
Holme
and
J.
Saramäki
, “
Temporal networks
,”
Phys. Rep.
519
,
97
125
(
2012
).
70.
G.
Demirel
,
F.
Vázquez
,
G. A.
Bhöme
, and
T.
Gross
, “
Moment-closure approximations for discrete adaptive networks
,”
Phys. D
267
,
68
80
(
2014
).
You do not currently have access to this content.