Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such “solitary states” are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

1.
Y.
Kuramoto
and
D.
Battogtokh
,
Nonlinear Phenom. Complex Syst.
5
,
380
(
2002
).
2.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2001
).
3.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2012
).
4.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
5.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
,
Nat. Phys.
8
,
662
(
2012
).
6.
S.
Nkomo
,
M. R.
Tinsley
, and
K.
Showalter
,
Phys. Rev. Lett.
110
,
244102
(
2013
).
7.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourriere
, and
O.
Hallatschek
,
Proc. Natl. Acad. Sci.
110
,
10563
(
2013
).
8.
T.
Kapitaniak
,
P.
Kuzma
,
J.
Wojewoda
,
K.
Czolczynski
, and
Y.
Maistrenko
,
Sci. Rep.
4
,
6379
(
2014
).
9.
L.
Schmidt
,
K.
Schönleber
,
K.
Krischer
, and
V.
Garcia–Morales
,
Chaos
24
,
013102
(
2014
).
10.
L. V.
Gambuzza
,
A.
Buscarino
,
S.
Chessari
,
L.
Fortuna
,
R.
Meucci
, and
M.
Frasca
,
Phys. Rev. E
90
,
032905
(
2014
).
11.
J. D.
Hart
,
K.
Bansal
,
T. E.
Murphy
, and
R.
Roy
,
Chaos
26
,
094801
(
2016
).
12.
L.
Larger
,
B.
Penkovsky
, and
Y.
Maistrenko
,
Nat. Commun.
6
,
7752
(
2015
).
13.
V.
Semenov
,
A.
Zakharova
,
Y.
Maistrenko
, and
E.
Schöll
,
Europhys. Lett.
115
,
10005
(
2016
).
14.
M. J.
Panaggio
and
D. M.
Abrams
,
Nonlinearity
28
,
R67
(
2015
).
15.
E.
Schöll
,
Eur. Phys. J. Spec. Top.
225
,
891
(
2016
).
16.
L. P.
Nizhnik
,
I. L.
Nizhnik
, and
M.
Hasler
, “
Stable stationary solutions in reaction-diffusion systems consisting of a 1-d array of bistable cells
,”
Int. J. Bifurcation Chaos
12
,
261
(
2002
).
17.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hovel
, and
E.
Scholl
, “
Loss of coherence in dynamical networks: Spatial chaos and chimera states
,”
Phys. Rev. Lett.
106
,
234102
(
2011
).
18.
P.
Ashwin
and
O.
Burylko
,
Chaos
25
,
013106
(
2015
).
19.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
,
Phys. Rev. E
91
,
022907
(
2015
).
20.
K.
Premalatha
,
V. K.
Chandrasekar
,
M.
Senthilvelan
, and
M.
Lakshmanan
,
Phys. Rev. E
94
,
012311
(
2016
).
21.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
,
Phys. Rev. E
89
,
060901(R)
(
2014
).
22.
T.
Bountis
,
V. G.
Kanas
,
J.
Hizanidis
, and
A.
Bezerianos
,
Eur. Phys. J. Spec. Top.
223
,
721
(
2014
).
23.
S.
Olmi
,
A.
Navas
,
S.
Boccaletti
, and
A.
Torcini
,
Phys. Rev. E
90
,
042905
(
2014
).
24.
S.
Olmi
,
E. A.
Martens
,
S.
Thutupalli
, and
A.
Torcini
,
Phys. Rev. E
92
,
030901(R)
(
2015
).
26.
F.
Salam
,
J. E.
Marsden
, and
P. P.
Varaiya
,
IEEE Trans. Circuits Syst.
31
,
673
(
1984
).
27.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
,
Eur. Phys. J. B
61
,
485
(
2008
).
28.
M.
Rohden
,
A.
Sorge
,
M.
Timme
, and
D.
Witthaut
,
Phys. Rev. Lett.
109
,
064101
(
2012
).
29.
S.
Auer
,
F.
Hellmann
,
M.
Krause
, and
J.
Kurths
,
Chaos
27
,
127003
(
2017
).
30.
B. R.
Trees
,
V.
Saranathan
, and
D.
Stroud
,
Phys. Rev. E
71
,
016215
(
2005
).
31.
B.
Ermentrout
,
J. Math. Biol.
29
,
571
(
1991
).
32.
H.-A.
Tanaka
,
A. J.
Lichtenberg
, and
S.
Oishi
,
Phys. Rev. Lett.
78
,
2104
(
1997
).
33.
H.-A.
Tanaka
,
A. J.
Lichtenberg
, and
S.
Oishi
,
Phys. D
100
,
279
(
1997
).
34.
M.
Antoni
and
S.
Ruffo
,
Phys. Rev. E
52
,
2361
(
1995
).
35.
For fixed parameters α and μ, different types of solitary patterns may co-exist. For example, the region of solitary–4 states is included in the region of solitary–2 ones, which in turn is included in the solitary–1 states area. However, for a higher number of isolated oscillators such inclusion scenario breaks down. For example, the region of solitary–10 is located more to the right in Fig. 1 and it only intersects with previously calculated sets.
36.
Y.
Maistrenko
,
S.
Brezetsky
,
P.
Jaros
,
R.
Levchenko
, and
T.
Kapitaniak
,
Phys. Rev. E
95
,
010203(R)
(
2017
).
37.
J.
Wojewoda
,
K.
Czolczynski
,
Y.
Maistrenko
, and
T.
Kapitaniak
,
Sci. Rep.
6
,
34329
(
2016
).
You do not currently have access to this content.