In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

1.
M.
Astorino
,
J.
Hamers
,
S. C.
Shadden
, and
J.-F.
Gerbeau
, “
A robust and efficient valve model based on resistive immersed surfaces
,”
Int. J. Numer. Methods Biomed. Eng.
28
,
937
959
(
2012
).
2.
B.
Baccani
,
F.
Domenichini
, and
G.
Pedrizzetti
, “
Vortex dynamics in a model left ventricle during filling
,”
Eur. J. Mech. B/Fluids
21
,
527
543
(
2002
).
3.
B.
Baccani
,
F.
Domenichini
,
G.
Pedrizzetti
, and
G.
Tonti
, “
Fluid dynamics of the left ventricular filling in dilated cardiomyopathy
,”
J. Biomech.
35
,
665
671
(
2002
).
4.
Y.
Bazilevs
,
L.
Beirão da Veiga
,
J. A.
Cottrell
,
T. J. R.
Hughes
, and
G.
Sangalli
, “
Isogeometric analysis: Approximation, stability, and error estimates for h-refined meshes
,”
Math. Models Methods Appl. Sci.
16
,
1031
1090
(
2006
).
5.
Y.
Bazilevs
,
V. M.
Calo
,
J. A.
Cottrell
,
T. J. R.
Hughes
,
A.
Reali
, and
G.
Scovazzi
, “
Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
197
,
173
201
(
2007
).
6.
Y.
Bazilevs
,
V. M.
Calo
,
T. J. R.
Hughes
, and
Y.
Zhang
, “
Isogeometric fluid-structure interaction: Theory, algorithms and computations
,”
Comput. Mech.
43
,
3
37
(
2008
).
7.
Y.
Bazilevs
,
J. R.
Gohean
,
T. J. R.
Hughes
,
R. D.
Moser
, and
Y.
Zhang
, “
Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device
,”
Comput. Methods Appl. Mech. Eng.
198
,
3534
3550
(
2009
).
8.
Y.
Bazilevs
and
T. J. R.
Hughes
, “
Weak imposition of Dirichlet boundary conditions in fluid mechanics
,”
Comput. Fluids
36
,
12
26
(
2007
).
9.
Y.
Bazilevs
,
C.
Michler
,
V. M.
Calo
, and
T. J. R.
Hughes
, “
Weak Dirichlet boundary conditions for wall-bounded turbulent flows
,”
Comput. Methods Appl. Mech. Eng.
196
,
4853
4862
(
2007
).
10.
B. J.
Bellhouse
, “
Fluid mechanics of a model mitral valve and left ventricle
,”
Cardiovasc. Res.
6
,
199
210
(
1972
).
11.
C.
Bertoglio
and
A.
Caiazzo
, “
A tangential regularization method for backflow stabilization in hemodynamics
,”
J. Comput. Phys.
261
,
162
171
(
2014
).
12.
F.
Brezzi
and
M.
Fortin
,
Mixed and Hybrid Finite Element Methods
(
Springer-Verlag
,
New York
,
1991
).
13.
P.
Bogacki
and
L. F.
Shampine
, “
A 3(2) pair of Runge-Kutta formulas
,”
Appl. Math. Lett.
2
,
321
325
(
1989
).
14.
C.
Chnafa
,
S.
Mendez
, and
F.
Nicoud
, “
Image-based large-eddy simulation in a realistic left heart
,”
Comput. Fluids
94
,
173
187
(
2014
).
15.
J.
Chung
and
G. M.
Hulbert
, “
A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method
,”
J. Appl. Mech.
60
,
371
375
(
1993
).
16.
T. J. R.
Hughes
,
J. A.
Cottrell
, and
Y.
Bazilevs
, “
Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
,”
Comput. Methods Appl. Mech. Eng.
194
,
4135
4195
(
2005
).
17.
J. A.
Cottrell
,
T. J. R.
Hughes
, and
Y.
Bazilevs
,
Isogeometric Analysis: Toward Integration of CAD and FEA
(
John Wiley & Sons
,
Chichester, UK
,
2009
).
18.
J. A.
Cottrell
,
T. J. R.
Hughes
, and
A.
Reali
, “
Studies of refinement and continuity in Isogeometric structural analysis
,”
Comput. Methods Appl. Mech. Eng.
196
,
4160
4183
(
2007
).
19.
L.
Dedè
,
M. J.
Borden
, and
T. J. R.
Hughes
, “
Isogeometric analysis for topology optimization with a phase field model
,”
Arch. Comput. Methods Eng.
19
,
427
465
(
2012
).
20.
F.
Domenichini
and
G.
Pedrizzetti
, “
Intraventricular vortex flow changes in the infarcted left ventricle: Numerical results in an idealised 3D shape
,”
Comput. Methods Biomech. Biomed. Eng.
14
,
95
101
(
2011
).
21.
F.
Domenichini
,
G.
Pedrizzetti
, and
B.
Baccani
, “
Three-dimensional filling flow into a model left ventricle
,”
J. Fluid Mech.
539
,
179
198
(
2005
).
22.
F.
Domenichini
,
G.
Querzoli
,
A.
Cenedese
, and
G.
Pedrizzetti
, “
Combined experimental and numerical analysis of the flow structure into the left ventricle
,”
J. Biomech.
40
,
1988
1994
(
2007
).
23.
J.
Donea
, “
Arbitrary Lagrangian-Eulerian finite element methods
,”
Computational Methods for Transient Analysis
, edited by
T. J. R.
Hughes
and
T.
Belytschko
(
Elsevier Scientific, Amsterdam
,
1983
), Vol.
198
, pp.
473
516
.
24.
J.
Donea
,
P.
Fasoli-Stella
, and
S.
Giuliani
Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems
,”
Transaction of the 4th SMIRT Conference
(
1977
).
25.
J.
Donea
,
S.
Giuliani
, and
J. P.
Halleux
, “
An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions
,”
Comput. Methods Appl. Mech. Eng.
33
,
689
723
(
1982
).
26.
K. S.
Dujardin
,
M.
Enriquez-Sarano
,
A.
Rossi
,
K. R.
Bailey
, and
J. B.
Seward
, “
Echocardiographic assessment of left ventricular remodeling: Are left ventricular diameters suitable tools?
,”
J. Am. Coll. Cardiol.
30
,
1534
1541
(
1997
).
27.
M.
Fedele
,
E.
Faggiano
,
L.
Dedè
, and
A.
Quarteroni
, “
A patient-specific aortic valve model based on moving resistive immersed implicit surfaces
,”
Biomech. Model. Mechanobiol.
16
,
1779
1803
(
2017
).
28.
L.
Formaggia
and
F.
Nobile
, “
A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements
,”
East-West J. Numer. Math.
7
,
105
131
(
1999
), available at https://infoscience.epfl.ch/record/176278/files/ale1_final.pdf.
29.
L.
Formaggia
and
F.
Nobile
, “
Stability analysis of second-order time accurate schemes for ALE-FEM
,”
Comput. Methods Appl. Mech. Eng.
193
,
4097
4116
(
2004
).
30.
L.
Forti
and
L.
Dedè
, “
Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS-LES modeling in a high performance computing framework
,”
Comput. Fluids
117
,
168
182
(
2015
).
31.
G. R.
Hong
,
G.
Pedrizzetti
,
G.
Tonti
,
P.
Li
,
Z.
Wei
,
J. K.
Kim
,
A.
Baweja
,
S.
Liu
,
N.
Chung
,
H.
Houle
,
J.
Narula
, and
M. A.
Vannan
, “
Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry
,”
JACC: Cardiovasc. Imaging
1
,
705
717
(
2008
).
32.
M.-C.
Hsu
,
I.
Akkerman
, and
Y.
Bazilevs
, “
Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions
,”
Comput. Mech.
50
,
499
511
(
2012
).
33.
M.-C.
Hsu
,
D.
Kamensky
,
Y.
Bazilevs
,
M. S.
Sacks
, and
T. J. R.
Hughes
, “
Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation
,”
Comput. Mech.
54
,
1055
1071
(
2014
).
34.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,”
Cent. Turbul. Res. Rep.
CTR-S88
,
193
208
(
1988
), available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf.
35.
D.
Kamensky
,
M.-C.
Hsu
,
D.
Schillinger
,
J. A.
Evans
,
A.
Aggarwal
,
Y.
Bazilevs
,
M. S.
Sacks
, and
T. J. R.
Hughes
, “
An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves
,”
Comput. Methods Appl. Mech. Eng.
284
,
1005
1053
(
2015
).
36.
K. E.
Jansen
,
C. H.
Whiting
, and
G. M.
Hulbert
, “
A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method
,”
Comput. Methods Appl. Mech. Eng.
190
,
305
319
(
2000
).
37.
M.
Juntunen
and
R.
Stenberg
, “
Nitsche's method for general boundary conditions
,”
Math. Comput.
78
,
1353
1374
(
2009
).
38.
M.
Kanski
,
P. M.
Arvidsson
,
J.
Töger
,
R.
Borgquist
,
E.
Heiberg
,
M.
Carlsson
, and
H.
Arheden
, “
Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data
,”
J. Cardiovasc. Magn. Reson.
17
(
111
),
1
10
(
2015
).
39.
S. S.
Khalafvand
,
E. Y. K.
Ng
,
L.
Zhong
, and
T. K.
Hung
, “
Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: Preliminary study
,”
Comput. Biol. Med.
42
,
863
870
(
2012
).
40.
P. J.
Kilner
,
G.-Z.
Yang
,
A. J.
Wilkes
,
R. H.
Mohiaddin
,
D. N.
Firmin
, and
M. H.
Yacoub
, “
Asymmetric redirection of flow through the heart
,”
Nature
404
,
759
761
(
2000
).
41.
H. B.
Kim
,
J. R.
Hertzberg
, and
R.
Shandas
, “
Development and validation of echo PIV
,”
Exp. Fluids
36
,
455
462
(
2004
).
42.
W. Y.
Kim
,
P. G.
Walker
,
E. M.
Pedersen
,
J. K.
Poulsen
,
S.
Oyre
,
K.
Houlind
, and
A. P.
Yoganathan
, “
Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping
,”
J. Am. Coll. Cardiol.
26
,
224
238
(
1995
).
43.
S. J.
Kovács
,
D. M.
Mcqueen
, and
C. S.
Peskin
, “
Modelling cardiac fluid dynamics and diastolic function
,”
Philos. Trans. R. Soc. A
359
,
1299
1314
(
2001
).
44.
S.
Krittian
,
U.
Janoske
,
H.
Oertel
, and
T.
Böhlke
, “
Partitioned fluid-solid coupling for cardiovascular blood flow: Left-ventricular fluid mechanics
,”
Ann. Biomed. Eng.
38
,
1426
1441
(
2010
).
45.
A.
Laadhari
and
A.
Quarteroni
, “
Numerical modeling of heart valves using resistive Eulerian surfaces
,”
Int. J. Numer. Methods Biomed. Eng.
32
,
e02743
(
2016
).
46.
R. M.
Lang
,
M.
Bierig
,
R. B.
Devereux
,
F. A.
Flachskampf
,
E.
Foster
,
P. A.
Pellikka
,
M. H.
Picard
,
M. J.
Roman
,
J.
Seward
,
J.
Shanewise
,
S.
Solomon
,
K. T.
Spencer
,
M. St.
John
, and
W.
Stewart
, “
Recommendations for chamber quantification
,”
Eur. J. Echocardiogr.
7
,
79
108
(
2006
).
47.
J. D.
Lemmon
and
A. P.
Yoganathan
, “
Computational model of left heart diastolic function with fluid-structure interaction
,”
J. Biomech. Eng.
122
,
297
303
(
2000
).
48.
J. O.
Mangual
,
E.
Kraigher-Krainer
,
A.
De Luca
,
L.
Toncelli
,
A.
Shah
,
S.
Solomon
,
G.
Galanti
,
F.
Domenichini
, and
G.
Pedrizzetti
, “
Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy
,”
J. Biomech.
46
,
1611
1617
(
2013
).
49.
D. M.
Mcqueen
and
C. S.
Peskin
, “
Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity
,” in
Mechanics for a New Millennium
(
Springer
,
Netherlands
,
2002
), pp.
429
444
.
50.
J. R.
Mitchell
and
J.
Wang
, Jr.
, “
Expanding application of the Wiggers diagram to teach cardiovascular physiology
,”
Adv. Physiol. Educ.
38
,
170
175
(
2014
).
51.
R.
Mittal
,
J. H.
Seo
,
V.
Vedula
,
Y. J.
Choi
,
H.
Liu
,
H. H.
Huang
,
S.
Jain
,
L.
Younes
,
T.
Abraham
, and
R. T.
George
, “
Computational modeling of cardiac hemodynamics: Current status and future outlook
,”
J. Comput. Phys.
305
,
1065
1082
(
2016
).
52.
M. E.
Moghadam
,
Y.
Bazilevs
,
T.-Y.
Hsia
,
I. E.
Vignon-Clementel
, and
A. L.
Marsden
, “
A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations
,”
Comput. Mech.
48
,
277
291
(
2011
).
53.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
,
252
271
(
1972
).
54.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
252
(
1977
).
55.
C. S.
Peskin
and
D. M.
McQueen
, “
A three-dimensional computational model of blood flow in the heart: I. Immersed elastic fibers in a viscous incompressible fluid
,”
J. Comput. Phys.
81
,
372
405
(
1989
).
56.
A.
Quarteroni
,
Numerical Models for Differential Problems
(
Springer–Verlag
,
Milan
,
2014
).
57.
A.
Quarteroni
,
T.
Lassila
,
S.
Rossi
, and
R.
Ruiz-Baier
, “
Integrated heart-coupling multiscale and multiphysics models for the simulation of the cardiac function
,”
Comput. Methods Appl. Mech. Eng.
314
,
345
407
(
2017
).
58.
A.
Quarteroni
,
A.
Veneziani
, and
C.
Vergara
, “
Geometric multiscale modeling of the cardiovascular system, between theory and practice
,”
Comput. Methods Appl. Mech. Eng.
302
,
193
252
(
2016
).
59.
H.
Reul
,
N.
Talukder
, and
W.
Muller
, “
Fluid mechanics of the natural mitral valve
,”
J. Biomech.
14
,
361
372
(
1981
).
60.
P.
Reymond
,
F.
Merenda
,
F.
Perren
,
D.
Rufenacht
, and
N.
Stergiopulos
, “
Validation of a one-dimensional model of the systemic arterial tree
,”
Am. J. Physiol. Heart Circ. Physiol.
297
,
H208
H222
(
2009
).
61.
P. P.
Sengupta
,
G.
Pedrizzetti
,
P. J.
Kilner
,
A.
Kheradvar
,
T.
Ebbers
,
G.
Tonti
,
A. G.
Fraser
, and
J.
Narula
, “
Emerging trends in CV flow visualization
,”
JACC: Cardiovasc. Imaging
5
,
305
316
(
2012
).
62.
B. K.
Shivamoggi
and
G. J. F.
van Heijst
, “
The Okubo-Weiss criteria in two-dimensional hydrodynamic and magnetohydrodynamic flows
,” preprint arXiv:1110.6190 (
2015
).
63.
A.
Tagliabue
, “
Isogeometric analysis for reduced fluid–structure interaction models in haemodynamic applications
,” Master Degree thesis (
Università degli Studi dell'Insubria
,
Italy
,
2012
).
64.
A.
Tagliabue
, “
Mathematical and numerical modeling of blood flow in an idealized left ventricle
,” Ph.D. thesis (
Politecnico di Milano, Department of Mathematics
,
2016
).
65.
A.
Tagliabue
,
L.
Dedè
, and
A.
Quarteroni
, “
Nitsche's method for parabolic partial differential equations with mixed time varying boundary conditions
,”
ESAIM: Math. Modell. Numer. Anal.
50
,
541
563
(
2016
).
66.
A.
Tagliabue
,
L.
Dedè
, and
A.
Quarteroni
, “
Fluid dynamics of an idealized left ventricle: The extended Nitsche's method for the treatment of heart valves as mixed time varying boundary conditions
,”
Int. J. Numer. Methods Fluids
85
,
135
164
(
2017
).
67.
K.
Takizawa
,
Y.
Bazilevs
, and
T. E.
Tezduyar
, “
Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling
,”
Arch. Comput. Methods Eng.
19
,
171
225
(
2012
).
68.
C.
Vergara
, “
Nitsche's method for defective boundary value problems in incompressible fluid-dynamics
,”
J. Sci. Comput.
46
,
100
123
(
2011
).
69.
J. A.
Vierendeels
,
K.
Riemslagh
,
E.
Dick
, and
P. R.
Verdonck
, “
Computer simulation of intraventricular flow and pressure during diastole
,”
J. Biomech. Eng.
122
,
667
674
(
2000
).
70.
H.
Watanabe
,
S.
Sugiura
,
H.
Kafuku
, and
T.
Hisada
, “
Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method
,”
Biophys. J.
87
,
2074
2085
(
2004
).
71.
C. H.
Whiting
, “
Stabilized finite element methods for fluid dynamics using a hierarchical basis
,” Master's thesis (
Rensselaer Polytechnic Institute Troy
,
New York
,
1999
).
72.
X.
Zheng
,
J. H.
Seo
,
V.
Vedula
,
T.
Abraham
, and
R.
Mittal
, “
Computational modeling and analysis of intracardiac flows in simple models of the left ventricle
,”
Eur. J. Mech. B/Fluids
35
,
31
39
(
2012
).
You do not currently have access to this content.