In this work, we investigate the influence of cardiac tissue deformation on re-entrant wave dynamics. We have developed a 3D strongly coupled electro-mechanical Bidomain model posed on an ideal monoventricular geometry, including fiber direction anisotropy and stretch-activated currents (SACs). The cardiac mechanical deformation influences the bioelectrical activity with two main mechanical feedback: (a) the geometric feedback (GEF) due to the presence of the deformation gradient in the diffusion coefficients and in a convective term depending on the deformation rate and (b) the mechano-electric feedback (MEF) due to SACs. Here, we investigate the relative contribution of these two factors with respect to scroll wave stability. We extend the previous works [Keldermann et al., Am. J. Physiol. Heart Circ. Physiol. 299, H134–H143 (2010) and Hu et al., PLoS One 8(4), e60287 (2013)] that were based on the Monodomain model and a simple non-selective linear SAC, while here we consider the full Bidomain model and both selective and non-selective components of SACs. Our simulation results show that the stability of cardiac scroll waves is influenced by MEF, which in case of low reversal potential of non-selective SACs might be responsible for the onset of ventricular fibrillation; GEF increases the scroll wave meandering but does not determine the scroll wave stability.

1.
I.
Adeniran
,
J. C.
Hancox
, and
H.
Zhang
, “
Effect of cardiac ventricular mechanical contraction on the characteristics of the ECG: A simulation study
,”
J. Biomed. Sci. Eng.
6
,
47
60
(
2013
).
2.
D.
Ambrosi
,
G.
Arioli
,
F.
Nobile
, and
A.
Quarteroni
, “
Electromechanical coupling in cardiac dynamics: The active strain approach
,”
SIAM J. Appl. Math.
71
,
605
621
(
2011
).
3.
S.
Balay
,
K.
Buschelman
,
W. D.
Gropp
,
D.
Kaushik
,
M.
Knepley
,
L.
Curfman McInnes
,
B. F.
Smith
, and
H.
Zhang
,
PETSc User's Manual, Technical Report ANL-95/11 - Revision 3.3, Argonne National Laboratory
,
2012
.
4.
M. J.
Bishop
,
B.
Rodriquez
,
J.
Eason
,
J. P.
Whiteley
,
N.
Trayanova
, and
D. J.
Gavaghan
, “
Synthesis of voltage-sensitive optical signals: Application to panoramic optical mapping
,”
Biophys. J.
90
,
2938
2945
(
2006
).
5.
M. J.
Bishop
,
B.
Rodriquez
,
F.
Qu
,
I. R.
Efimov
,
D. J.
Gavaghan
, and
N. A.
Trayanova
, “
The role of photon scattering in optical signal distortion during arrhythmia and defrillation
,”
Biophys. J.
93
,
3714
3726
(
2007
).
6.
E. M.
Cherry
and
F. H.
Fenton
, “
Suppression of alternans and conduction blocks despite steep APD restitution: Electrotonic, memory, and conduction velocity restitution effects
,”
Am. J. Physiol. Heart Circ. Physiol.
286
,
H2332
H2341
(
2004
).
7.
P.
Colli Franzone
,
L.
Guerri
,
M.
Pennacchio
, and
B.
Taccardi
, “
Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry
,”
Math. Biosci.
147
,
131
171
(
1998
).
8.
P.
Colli Franzone
,
L. F.
Pavarino
, and
S.
Scacchi
,
Mathematical Cardiac Electrophysiology
(
Springer
,
MSA, New York
,
2014
), Vol.
13
.
9.
P.
Colli Franzone
,
L. F.
Pavarino
, and
S.
Scacchi
, “
Parallel multilevel solvers for the cardiac electro-mechanical coupling
,”
Appl. Numer. Math.
95
,
140
153
(
2015
).
10.
P.
Colli Franzone
,
L. F.
Pavarino
, and
S.
Scacchi
, “
Bioelectrical effects of mechanical feedbacks in a strongly coupled cardiac electro-mechanical model
,”
Math. Mod. Methods Appl. Sci.
26
(
1
),
27
57
(
2016
).
11.
P.
Colli Franzone
,
L. F.
Pavarino
, and
S.
Scacchi
, “
Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study
,”
Math. Biosci.
280
,
71
86
(
2016
).
12.
J.
Constantino
,
Y. X.
Hu
,
A. C.
Lardo
, and
N. A.
Trayanova
, “
Mechanistic insight into prolonged electromechanical delay in dyssynchronous heart failure: A computational study
,”
Am. J. Physiol. Heart Circ. Physiol.
305
,
H1265
H1273
(
2013
).
13.
B. L.
de Oliveira
,
B. M.
Rocha
,
L. P. S.
Barra
,
E. M.
Toledo
,
J.
Sundnes
, and
R.
Weber dos Santos
, “
Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge
,”
Int. J. Numer. Methods. Biomed. Eng.
29
,
1323
1337
(
2013
).
14.
T. S. E.
Eriksson
,
A. J.
Prassl
,
G.
Plank
, and
G. A.
Holzapfel
, “
Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction
,”
Math. Mech. Solids
18
,
592
606
(
2013
).
15.
M.
Favino
,
S.
Pozzi
,
S.
Pezzuto
,
F. W.
Prinzen
,
A.
Auricchio
, and
R.
Krause
, “
Impact of mechanical deformation on pseudo-ECG: A simulation study
,”
Europace
18
,
77
84
(
2016
).
16.
F. J.
Fenton
,
E. M.
Cherry
,
H. M.
Hastings
, and
S. J.
Evans
, “
Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity
,”
Chaos
12
,
852
892
(
2002
).
17.
F. J.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
,
20
47
(
1998
).
18.
T.
Fritz
,
C.
Wieners
,
G.
Seemann
,
H.
Steen
, and
O.
Doessel
, “
Simulation of the contraction of the ventricles in a human heart model including atria and pericardium
,”
Biomech. Mod. Mechanobiol.
13
(
3
),
627
641
(
2014
).
19.
S.
Göktepe
and
E.
Kuhl
, “
Electromechanics of the heart - a unified approach to the strongly coupled excitation-contraction problem
,”
Comput. Mech.
45
,
227
243
(
2010
).
20.
R. A.
Gray
,
A. M.
Pertson
, and
J.
Jalife
, “
Spatial and temporal organization during cardiac fibrillation
,”
Nature
392
,
75
78
(
1998
).
21.
J. M.
Guccione
,
A. D.
McCulloch
, and
L. K.
Waldman
, “
Passive material properties of intact ventricular myocardium determined from a cylindrical model
,”
J. Biomech. Eng.
113
,
42
55
(
1991
).
22.
J. M.
Guccione
,
K. D.
Costa
, and
A. D.
McCulloch
, “
Finite element stress analysis of left ventricular mechanics in the beating dog heart
,”
J. Biomech.
28
,
1167
1177
(
1995
).
23.
V.
Gurev
,
J.
Constantino
,
J. J.
Rice
, and
N. A.
Trayanova
, “
Distribution of electromechanical delay in the heart: Insights from a three-dimensional electromechanical model
,”
Biophys. J.
99
,
745
754
(
2010
).
24.
V.
Gurev
,
T.
Lee
,
J.
Constantino
,
H.
Arevalo
, and
N. A.
Trayanova
, “
Models of cardiac electromechanics based on individual hearts imaging data: Image-based electromechanical models of the heart
,”
Biomech. Model. Mechanobiol.
10
,
295
306
(
2011
).
25.
C. J.
Hyatt
,
S. F.
Mironov
,
M.
Wellner
,
O.
Berenfeld
,
A. K.
Popp
,
D. A.
Weiz
,
J.
Jalife
, and
A. M.
Pertsov
, “
Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardium activation patterns
,”
Biophys. J.
85
,
2673
2683
(
2003
).
26.
S. N.
Healy
and
A. D.
McCulloch
, “
An ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes
,”
Europace
7
,
S128
S134
(
2005
).
27.
T. J.
Herron
,
P.
Lee
, and
J.
Jalife
, “
Optical imaging of voltage and calcium in cardiac cells & tissues
,”
Circ. Res.
110
,
609
623
(
2012
).
28.
G. A.
Holzapfel
and
R. W.
Ogden
, “
Constitutive modelling of passive myocardium. A structurally-based framework for material characterization
,”
Philos. Trans. R. Soc. London, Ser. A
367
,
3445
3475
(
2009
).
29.
Y.
Hu
,
V.
Gurev
,
J.
Constantino
,
J. D.
Bayer
, and
N. A.
Trayanova
, “
Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation
,”
PLoS One
8
(
4
),
e60287
(
2013
).
30.
H.
Hu
and
F.
Sachs
, “
Stretch–activated ion channels in the heart
,”
J. Mol. Cell. Cardiol.
29
,
1511
1523
(
1997
).
31.
J.
Huang
,
J. M.
Rogers
,
C. R.
Killingswoth
,
K. P.
Singh
,
W. M.
Smith
, and
R.
Ideker
, “
Evolution of activation patterns during long-duration ventricular fibrillation in dogs
,”
Am. J. Physiol. Heart Circ. Physiol.
286
,
H1193-H1200
(
2004
).
32.
P. J.
Hunter
,
A. D.
McCulloch
, and
H. E. D. J.
ter Keurs
, “
Modelling the mechanical properties of cardiac muscle
,”
Prog. Biophys. Mol. Biol.
69
,
289
331
(
1998
).
33.
X.
Jie
,
V.
Gurev
, and
N. A.
Trayanova
, “
Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia
,”
Circ. Res.
106
,
185
192
(
2010
).
34.
A.
Kamkin
,
I.
Kiseleva
,
K. D.
Wagner
,
K. P.
Leiterer
,
H.
Theres
,
H.
Scholz
,
J.
Gunther
, and
M. J.
Lab
, “
Mechano-electric feedback in right atrium after left ventricular infarction in rats
,”
J. Mol. Cell. Cardiol.
32
,
465
477
(
2000
).
35.
R. H.
Keldermann
,
M. P.
Nash
,
H.
Gelderblom
,
V. Y.
Wang
, and
A. V.
Panfilov
, “
Electromechanical wavebreak in a model of the human left ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
299
,
H134
H143
(
2010
).
36.
R. C. P.
Kerckhoffs
,
P. H. M.
Bovendeerd
,
J. C. S.
Kotte
,
F. W.
Prinzen
,
K.
Smits
, and
T.
Arts
, “
Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: A model study
,”
Ann. Biomed. Eng.
31
,
536
547
(
2003
).
37.
R. C. P.
Kerckhoffs
,
O. P.
Faris
,
P. H. M.
Bovendeerd
,
F. W.
Prinzen
,
K.
Smits
,
E. R.
McVeigh
, and
T.
Arts
, “
Electromechanics of paced left ventricle simulated by straightforward mathematical model: Comparison with experiments
,”
Am. J. Physiol. Heart Circ. Physiol.
289
,
H1889
H1897
(
2005
).
38.
P.
Kohl
,
F.
Sachs
, and
M. R.
Franz
,
Cardiac Mechano-Electric Coupling and Arrhythmias
, 2th ed. (
Oxford University Press
,
Oxford
,
2011
).
39.
P.
Kohl
and
F.
Sachs
, “
Mechanoelectric feedback in cardiac cells
,”
Philos. Trans. R. Soc. London, Ser. A.
359
,
1173
1185
(
2001
).
40.
P.
Kohl
,
P.
Hunter
, and
D.
Noble
, “
Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models
,”
Prog. Biophys. Mol. Biol.
71
,
91
138
(
1999
).
41.
S.
Land
,
S. A.
Niederer
,
J. M.
Aronsen
,
E. K. S.
Espe
,
L. L.
Zhang
,
W. E.
Louch
,
I.
Sjaastad
,
O. M.
Sejersted
, and
N. P.
Smith
, “
An analysis of deformation-dependent electromechanical coupling in the mouse heart
,”
J. Physiol.
590
,
4553
4569
(
2012
).
42.
S.
Land
,
S. A.
Niederer
, and
N. P.
Smith
, “
Efficient computational methods for solving strongly coupled cardiac electromechanics
,”
IEEE Trans. Biomed. Eng.
59
(
5
),
1219
1228
(
2012
).
43.
J. I.
Laughner
,
S.
Zhang
,
H.
Li
,
C. C.
Shao
, and
I. R.
Efimov
, “
Mapping cardiac surface mechanics with structured light imaging
,”
Am. J. Physiol. Heart Circ. Physiol.
303
,
H712
H720
(
2012
).
44.
W.
Li
,
V.
Gurev
,
A. D.
McCulloch
, and
N. A.
Trayanova
, “
The role of mechanoelectric feedback in vulnerability to electric shock
,”
Prog. Biophys. Mol. Biol.
97
,
461
478
(
2008
).
45.
X. T.
Li
,
V.
Dyachenko
,
M.
Zuzarte
,
C.
Putzke
,
R.
Preisig-Muller
,
G.
Isenberg
, and
J.
Daut
, “
The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle
,”
Cardiovasc. Res.
69
,
86
97
(
2006
).
46.
W.
Li
,
P.
Kohl
, and
N.
Trayanova
, “
Myocardial ischemia lowers precordial thump efficacy: An inquiry into mechanisms using three-dimensional simulations
,”
Heart Rhythm
3
,
179
186
(
2006
).
47.
M. P.
Nash
,
A.
Mourad
,
R. H.
Clayton
,
P. M.
Sutton
,
C. P.
Bradley
,
M.
Hayward
,
D. J.
Peterson
, and
P.
Taggart
, “
Evidence for multiple mechanisms in human ventricular fibrillation
,”
Circulation
114
,
536
542
(
2006
).
48.
M. P.
Nash
and
A. V.
Panfilov
, “
Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias
,”
Prog. Biophys. Mol. Biol.
85
,
501
522
(
2004
).
49.
S. A.
Niederer
,
P. J.
Hunter
, and
N. P.
Smith
, “
A quantitative analysis of cardiac myocyte relaxation: a simulation study
,”
Biophys. J.
90
,
1697
1722
(
2006
).
50.
S. A.
Niederer
and
N. P.
Smith
, “
A mathematical model of the slow force response to stretch in rat ventricular myocites
,”
Biophys. J.
92
,
4030
4044
(
2007
).
51.
S. A.
Niederer
and
N. P.
Smith
, “
An improved numerical method for strong coupling of excitation and contraction models in the heart
,”
Prog. Biophys. Mol. Biol.
96
,
90
111
(
2008
).
52.
P. J.
Pathmanathan
and
J. P.
Whiteley
, “
A numerical method for cardiac mechanoelectric simulations
,”
Ann. Biomed. Eng.
37
,
860
873
(
2009
).
53.
L. F.
Pavarino
and
S.
Scacchi
, “
Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system
,”
SIAM J. Sci. Comput.
31
,
420
443
(
2008
).
54.
L. F.
Pavarino
,
S.
Scacchi
, and
S.
Zampini
, “
Newton–Krylov–BDDC solvers for non-linear cardiac mechanics
,”
Comput. Methods Appl. Mech. Eng.
295
,
562
580
(
2015
).
55.
R.
Peyronnet
,
J. M.
Nerbonne
, and
P.
Kohl
, “
Cardiac mechano–gated ion channels and arrhythmias
,”
Circ. Res.
118
,
311
329
(
2016
).
56.
Z.
Qu
,
J.
Kil
,
F.
Xie
,
A.
Garfinkel
, and
J. N.
Weiss
, “
Scroll wave dynamics in a three-dimensional cardiac tissue model: Roles of restitution, thickness, and fiber rotation
,”
Biophys. J.
78
,
2761
2775
(
2000
).
57.
Z.
Qu
,
G.
Hu
,
A.
Garfinkel
, and
J. N.
Weiss
, “
Nonlinear and stochastic dynamics in the heart
,”
Phys. Rep.
534
,
61
162
(
2014
).
58.
J. J.
Rice
,
F.
Wang
,
D. M.
Bers
, and
P. P.
de Tombe
, “
Approximate model of cooperative activation and cross bridge cycling in cardiac muscle using ordinary differential equations
,”
Biophys. J.
95
,
2368
2390
(
2008
).
59.
G. K.
Rohde
,
B. M.
Dawant
, and
L.
Shien-Fong
, “
Correction of motion artifact in cardiac optical mapping using image registration
,”
IEEE Trans. Biomed. Eng.
52
,
338
341
(
2005
).
60.
S.
Rossi
,
R.
Ruiz-Baier
,
L. F.
Pavarino
, and
A.
Quarteroni
, “
Orthotropic active strain models for the numerical simulation of cardiac biomechanics
,”
Int. J. Numer. Methods Biomed. Eng.
28
,
761
788
(
2012
).
61.
J.
Sainte-Marie
,
D.
Chapelle
,
R.
Cimrman
, and
M.
Sorine
, “
Modeling and estimation of cardiac electromechanical activity
,”
Comp. Struct.
84
,
1743
1759
(
2006
).
62.
K.
Seo
,
M.
Inagaki
,
S.
Nishimura
,
I.
Hidaka
,
M.
Sugimachi
,
T.
Hisada
, and
S.
Suguira
, “
Structural heterogeneity in ventricular wall plays a significant in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations
,”
Circ. Res.
106
,
176
184
(
2010
).
63.
K. H. W. J.
ten Tusscher
,
D.
Noble
,
P. J.
Noble
, and
A. V.
Panfilov
, “
A model for human ventricular tissue
,”
Am. J. Phys. Heart Circ. Physiol.
286
,
H1573
H1589
(
2004
).
64.
K. H. W. J.
ten Tusscher
and
A. V.
Panfilov
, “
Alternans and spiral breakup in a human ventricular tissue model
,”
Am. J. Phys. Heart Circ. Physiol.
291
,
H1088
H1100
(
2006
).
65.
K. H. W. J.
ten Tusscher
and
A. V.
Panfilov
, “
Organization of ventricular fibrillation in the human heart
,”
Circ. Res.
100
,
e87
e101
(
2007
).
66.
N.
Trayanova
,
W.
Li
,
J.
Eason
, and
P.
Kohl
, “
Effect of stretch-activated channels on defibrillation efficacy
,”
Heart Rhythm
1
,
67
77
(
2004
).
67.
T. P.
Usyk
,
I. J.
LeGrice
, and
A. D.
McCulloch
, “
Computational model of three-dimensional cardiac electromechanics
,”
Comput. Visualization Sci.
4
,
249
257
(
2002
).
68.
T. P.
Usyk
and
A. D.
McCulloch
, “
Electromechanical model of cardiac resychronization in the dilated failing heart with left bundle branch block
,”
J. Electrocardiol.
36
,
57
61
(
2003
).
69.
C.
Vergara
,
M.
Lange
,
S.
Palamara
,
T.
Lassila
,
A. F.
Frangi
, and
A.
Quarteroni
, “
A coupled 3D - 1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network
,”
J. Comput. Phys.
308
,
218
238
(
2016
).
70.
F. J.
Vetter
and
A. D.
McCulloch
, “
Mechanoelectric feedback in a model of the passively inflated left ventricle
,”
Ann. Biomed. Eng.
29
,
414
426
(
2001
).
71.
F.
Xie
,
Z.
Qu
,
J.
Yang
,
A.
Baher
,
J.
Weiss
, and
A.
Garfinkel
, “
A simulation study of the effects of cardiac anatomy in ventricular fibrillation
,”
J. Clin. Invest.
113
,
686
693
(
2004
).
72.
M.
Zabel
,
B. S.
Koller
,
F.
Sachs
, and
M. R.
Franz
, “
Stretch-induced voltage changes in the isolated beating heart: Importance of the timing of stretch and implications for stretch-activated ion channels
,”
Cardiovasc. Res.
32
,
120
130
(
1996
).
73.
H.
Zhang
,
K.
Iijima
,
J.
Huang
,
G. P.
Walcott
, and
J. M.
Rogers
, “
Optical mapping of membrane potential and epicardial deformation in beating hearts
,”
Biophys. J.
111
,
438
451
(
2016
).
74.
T.
Zeng
,
G. C. L.
Bett
, and
F.
Sachs
, “
Stretch-activated whole cell currents in adult rat cardiac myocytes
,”
Am. J. Physiol. Heart Circ. Physiol.
278
,
H548
H557
(
2000
).
75.
S. T.
Wall
,
J. M.
Guccione
,
M. B.
Ratcliffe
, and
J. S.
Sundnes
, “
Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injures left ventricle: A finite element model study
,”
Am J. Physiol. Heart Circ. Physiol.
302
,
H206
H214
(
2012
).
76.
J. N.
Weiss
,
Z.
Qu
,
P. S.
Chen
,
S. F.
Lin
,
H. S.
Karagueuzian
,
H.
Hayashi
,
A.
Garfinkel
, and
A.
Karma
, “
The dynamics of cardiac fibrillation
,”
Circulation
112
,
1232
1240
(
2005
).
You do not currently have access to this content.