A network-based approach is presented to investigate the cerebrovascular flow patterns during atrial fibrillation (AF) with respect to normal sinus rhythm (NSR). AF, the most common cardiac arrhythmia with faster and irregular beating, has been recently and independently associated with the increased risk of dementia. However, the underlying hemodynamic mechanisms relating the two pathologies remain mainly undetermined so far; thus, the contribution of modeling and refined statistical tools is valuable. Pressure and flow rate temporal series in NSR and AF are here evaluated along representative cerebral sites (from carotid arteries to capillary brain circulation), exploiting reliable artificially built signals recently obtained from an in silico approach. The complex network analysis evidences, in a synthetic and original way, a dramatic signal variation towards the distal/capillary cerebral regions during AF, which has no counterpart in NSR conditions. At the large artery level, networks obtained from both AF and NSR hemodynamic signals exhibit elongated and chained features, which are typical of pseudo-periodic series. These aspects are almost completely lost towards the microcirculation during AF, where the networks are topologically more circular and present random-like characteristics. As a consequence, all the physiological phenomena at the microcerebral level ruled by periodicity—such as regular perfusion, mean pressure per beat, and average nutrient supply at the cellular level—can be strongly compromised, since the AF hemodynamic signals assume irregular behaviour and random-like features. Through a powerful approach which is complementary to the classical statistical tools, the present findings further strengthen the potential link between AF hemodynamic and cognitive decline.

1.
J. A.
Etchings
and
K.
Buetow
,
Strategies in Biomedical Data Science: Driving Force for Innovation
(
Wiley
,
2017
).
2.
R.
Albert
and
A. L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
3.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D. U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
4.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
5.
L. D. F.
Costa
,
O. N.
Oliveira
,
G.
Travieso
,
F. A.
Rodrigues
,
P. R. V.
Boas
,
L.
Antiqueira
,
M. P.
Viana
, and
L. E. C.
Rocha
, “
Analyzing and modeling real-world phenomena with complex networks: A survey of applications
,”
Adv. Phys.
60
,
329
412
(
2011
).
6.
S.
Havlin
,
D. Y.
Kenett
,
E.
Ben-Jacob
,
A.
Bunde
,
R.
Cohen
,
H.
Hermann
,
J. W.
Kantelhardt
,
J.
Kertsz
,
S.
Kirkpatrick
,
J.
Kurths
,
J.
Portugali
, and
S.
Solomon
, “
Challenges in network science: Applications to infrastructures, climate, social systems and economics
,”
Eur. Phys. J. Spec. Top.
214
,
273
293
(
2012
).
7.
K.
Fang
,
B.
Sivakumar
, and
F. M.
Woldemeskel
, “
Complex networks, community structure, and catchment classification in a large-scale river basin
,”
J. Hydrol.
545
,
478
493
(
2017
).
8.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
Complex networks in climate dynamics
,”
Eur. Phys. J. Spec. Top.
174
,
157
179
(
2009
).
9.
S.
Scarsoglio
,
F.
Laio
, and
L.
Ridolfi
, “
Climate dynamics: A network-based approach for the analysis of global precipitation
,”
PLoS One
8
,
e71129
(
2013
).
10.
A. A.
Tsonis
and
K. L.
Swanson
, “
Topology and predictability of el niño and la niña networks
,”
Phys. Rev. Lett.
100
,
228502
(
2008
).
11.
K.
Taira
,
A. G.
Nair
, and
S. L.
Brunton
, “
Network structure of two-dimensional decaying isotropic turbulence
,”
J. Fluid Mech.
795
,
795R21
(
2016
).
12.
S.
Scarsoglio
,
G.
Iacobello
, and
L.
Ridolfi
, “
Complex networks unveiling spatial patterns in turbulence
,”
Int. J. Bifurcation Chaos
26
,
1650223
(
2016
).
13.
L.
Tupikina
,
N.
Molkenthin
,
C.
López
,
N. M. E.
Hernández-García
, and
J.
Kurths
, “
Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics
,”
PLoS One
11
,
e0153703
(
2016
).
14.
J. C.
Reijneveld
,
S. C.
Ponten
,
H. W.
Berendse
, and
C. J.
Stam
, “
The application of graph theoretical analysis to complex networks in the brain
,”
Clin. Neurophysiol.
118
,
2317
2331
(
2007
).
15.
A. J.
Lusis
and
J. N.
Weiss
, “
Cardiovascular networks: Systems-based approaches to cardiovascular disease
,”
Circulation
121
,
157
170
(
2010
).
16.
G. M. R.
Ávila
,
A.
Gapelyuk
,
N.
Marwan
,
T.
Walther
,
H.
Stepan
,
J.
Kurths
, and
N.
Wessel
, “
Classification of cardiovascular time series based on different coupling structures using recurrence networks analysis
,”
Philos. Trans. R. Soc. A
371
,
20110623
(
2013
).
17.
E.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
,
186
198
(
2009
).
18.
R. V.
Donner
,
M.
Small
,
J. F.
Donges
,
N.
Marwan
,
Y.
Zou
,
R.
Xiang
, and
J.
Kurths
, “
Recurrence-based time series analysis by means of complex network methods
,”
Int. J. Bifurcation Chaos
21
,
1019
1046
(
2011
).
19.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
4972
4975
(
2008
).
20.
J.
Zhang
and
M.
Small
, “
Complex network from pseudoperiodic time series: Topology versus dynamics
,”
Phys. Rev. Lett.
96
,
238701
(
2006
).
21.
J.
Zhang
,
J.
Sun
,
X.
Luo
,
K.
Zhang
,
T.
Nakamura
, and
M.
Small
, “
Characterizing pseudoperiodic time series through the complex network approach
,”
Physica D
237
,
2856
2865
(
2008
).
22.
S. S.
Chugh
,
R.
Havmoeller
,
K.
Narayanan
,
D.
Singh
,
M.
Rienstra
,
E. J.
Benjamin
,
R. F.
Gillum
,
Y. H.
Kim
,
J. H. J.
McAnulty
,
Z. J.
Zheng
,
M. H.
Forouzanfar
,
M.
Naghavi
,
G. A.
Mensah
,
M.
Ezzati
, and
C. J.
Murray
, “
Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study
,”
Circulation
129
,
837
847
(
2014
).
23.
F.
Buchwald
,
B.
Norrving
, and
J.
Petersson
, “
Atrial fibrillation in transient ischemic attack versus ischemic stroke
,”
Stroke
47
,
2456
2461
(
2016
).
24.
P. A.
Wolf
,
R. D.
Abbott
, and
W. B.
Kannel
, “
Atrial-fibrillation as an independent risk factor for stroke - The framingham-study
,”
Stroke
22
,
983
988
(
1991
).
25.
S.
Kalantarian
,
H.
Ay
,
R. L.
Gollub
,
H.
Lee
,
K.
Retzepi
,
M.
Mansour
, and
J. N.
Ruskin
, “
Association between atrial fibrillation and silent cerebral infarctions a systematic review and meta-analysis
,”
Ann. Intern. Med.
161
,
650
(
2014
).
26.
F.
Gaita
,
L.
Corsinovi
,
M.
Anselmino
,
C.
Raimondo
,
M.
Pianelli
,
E.
Toso
,
L.
Bergamasco
,
C.
Boffano
,
M. C.
Valentini
,
F.
Cesarani
, and
M.
Scaglione
, “
Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function
,”
J. Am. Coll. Cardiol.
62
,
1990
1997
(
2013
).
27.
T.
Sabatini
,
G. B.
Frisoni
,
P.
Barbisoni
,
G.
Bellelli
,
R.
Rozzini
, and
M.
Trabucchi
, “
Atrial fibrillation and cognitive disorders in older people
,”
J. Am. Geriatr. Soc.
48
,
387
390
(
2000
).
28.
V.
Jacobs
,
M. J.
Cutler
,
J. D.
Day
, and
T. J.
Bunch
, “
Atrial fibrillation and dementia
,”
Trends Cardiovasc. Med.
25
,
44
51
(
2014
).
29.
S.
Kalantarian
,
T. A.
Stern
,
M.
Mansour
, and
J. N.
Ruskin
, “
Cognitive impairment associated with atrial fibrillation a meta-analysis
,”
Ann. Intern. Med.
158
,
338
346
(
2013
).
30.
D. S.
Hui
,
J. E.
Morley
,
P. C.
Mikolajczak
, and
R.
Lee
, “
Atrial fibrillation: A major risk factor for cognitive decline
,”
Am. Heart J.
169
,
448
456
(
2015
).
31.
L. Y.
Chen
,
S. K.
Agarwal
,
F. L.
Norby
,
R. F.
Gottesman
,
L. R.
Loehr
,
E. Z.
Soliman
,
T. H.
Mosley
,
A. R.
Folsom
,
J.
Coresh
, and
A.
Alonso
, “
Persistent but not paroxysmal atrial fibrillation is independently associated with lower cognitive function
,”
J. Am. Coll. Cardiol.
67
,
1379
1380
(
2016
).
32.
E. L.
Thacker
,
B.
McKnight
,
B. M.
Psaty
,
W. T. J.
Longstreth
,
C. M.
Sitlani
,
S.
Dublin
,
A. M.
Arnold
,
A. L.
Fitzpatrick
,
R. F.
Gottesman
, and
S. R.
Heckbert
, “
Atrial fibrillation and cognitive decline a longitudinal cohort study
,”
Neurology
81
,
119
125
(
2013
).
33.
A.
Kanmanthareddy
,
A.
Vallakati
,
A.
Sridhar
,
M.
Reddy
,
H. P.
Sanjani
,
J.
Pillarisetti
,
D.
Atkins
,
S.
Bommana
,
M.
Jaeger
,
L.
Berenbom
, and
D.
Lakkireddy
, “
The impact of atrial fibrillation and its treatment on dementia
,”
Curr. Cardiol. Rep.
16
,
519
(
2014
).
34.
S.
Severi
,
B.
Rodriguez
, and
A.
Zaza
, “
Computational cardiac electrophysiology is ready for prime time
,”
Europace
16
(
3
),
382
383
(
2014
).
35.
Y.
Shi
,
P.
Lawford
, and
R.
Hose
, “
Review of zero-d and 1-d models of blood flow in the cardiovascular system
,”
BioMed. Eng. OnLine
10
,
33
(
2011
).
36.
M.
Anselmino
,
S.
Scarsoglio
,
A.
Saglietto
,
F.
Gaita
, and
L.
Ridolfi
, “
Transient cerebral hypoperfusion and hypertensive events during atrial fibrillation: A plausible mechanism for cognitive impairment
,”
Sci. Rep.
6
,
28635
(
2016
).
37.
S.
Scarsoglio
,
A.
Saglietto
,
M.
Anselmino
,
F.
Gaita
, and
L.
Ridolfi
, “
Alteration of cerebrovascular haemodynamic patterns due to atrial fibrillation: An in silico investigation
,”
J. R. Soc. Interface
14
,
20170180
(
2017
).
38.
T.
Korakianitis
and
Y.
Shi
, “
Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves
,”
J. Biomech.
39
,
1964
1982
(
2006
).
39.
S.
Scarsoglio
,
A.
Guala
,
C.
Camporeale
, and
L.
Ridolfi
, “
Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach
,”
Med. Biol. Eng. Comput.
52
,
905
920
(
2014
).
40.
S.
Scarsoglio
,
C.
Camporeale
,
A.
Guala
, and
L.
Ridolfi
, “
Fluid dynamics of heart valves during atrial fibrillation: A lumped parameter-based approach
,”
Comput. Methods Biomech. Biomed. Eng.
19
,
1060
1068
(
2016a
).
41.
M.
Ursino
and
M.
Giannessi
, “
A model of cerebrovascular reactivity including the circle of willis and cortical anastomoses
,”
Ann. Biomed. Eng.
38
,
955
974
(
2010
).
42.
J.
Hayano
,
F.
Yamasaki
,
S.
Sakata
,
A.
Okada
,
S.
Mukai
, and
T.
Fujinami
, “
Spectral characteristics of ventricular response to atrial fibrillation
,”
Am. J. Physiol. - Heart Circ. Physiol.
273
,
H2811
H2816
(
1997
).
43.
T.
Hennig
,
P.
Maass
,
J.
Hayano
, and
S.
Heinrichs
, “
Exponential distribution of long heart beat intervals during atrial fibrillation and their relevance for white noise behaviour in power spectrum
,”
J. Biol. Phys.
32
,
383
392
(
2006
).
44.
M.
Kobayashi
and
T.
Musha
, “
1/f fluctuation of heartbeat period
,”
IEEE Trans. Biomed. Eng.
29
,
456
457
(
1982
).
45.
C. K.
Peng
,
J.
Mietus
,
J. M.
Hausdorff
,
S.
Havlin
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Long-range anticorrelations and non-gaussian behavior of the heartbeat
,”
Phys. Rev. Lett.
70
,
1343
1346
(
1993
).
46.
J. P.
Saul
,
P.
Albrecht
,
R. D.
Berger
, and
R. J.
Cohen
, “
Analysis of long term heart rate variability: Methods, 1/f scaling and implications
,”
Comput. Cardiol.
14
,
419
422
(
1988
).
47.
Y.
Yamamoto
and
R. L.
Hughson
, “
On the fractal nature of heart rate variability in humans: Effects of data length and beta-adrenergic blockade
,”
Am. J. Physiol.
266
,
R40
R49
(
1994
).
48.
B. K.
Bootsma
,
A. J.
Hoelen
,
J.
Strackee
, and
F. L.
Meijler
, “
Analysis of r-r intervals in patients with atrial fibrillation at rest and during exercise
,”
Circulation
41
,
783
794
(
1970
).
49.
M.
Sosnowski
,
B.
Korzeniowska
,
P.
Macfarlane
, and
M.
Tendera
, “
Relationship between RR interval variation and left ventricular function in sinus rhythm and atrial fibrillation as estimated by means of heart rate variability fraction
,”
Cardiol. J.
19
,
538
545
(
2011
).
50.
K.
Tateno
and
L.
Glass
, “
Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and δ RR intervals
,”
Med. Biol. Eng. Comput.
39
,
664
671
(
2001
).
51.
N.
Westerhof
,
N.
Stergiopulos
, and
M. I.
Noble
,
Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education
(
Springer
,
New York
,
2010
).
52.
S.
Scarsoglio
,
A.
Saglietto
,
F.
Gaita
,
L.
Ridolfi
, and
M.
Anselmino
, “
Computational fluid dynamics modelling of left valvular heart diseases during atrial fibrillation
,”
PeerJ
4
,
e2240
(
2016
).
53.
M.
Anselmino
,
S.
Scarsoglio
,
C.
Camporeale
,
A.
Saglietto
,
F.
Gaita
, and
L.
Ridolfi
, “
Rate control management of atrial fibrillation: May a mathematical model suggest an ideal heart rate?
,”
PLoS One
10
,
e119868
(
2015
).
54.
M.
Anselmino
,
S.
Scarsoglio
,
A.
Saglietto
,
F.
Gaita
, and
L.
Ridolfi
, “
A computational study on the relation between resting heart rate and atrial fibrillation hemodynamics under exercise
,”
PLoS One
12
,
e0169967
(
2017
).
55.
M. E. J.
Newman
,
Networks: An Introduction
(
Oxford University Press
,
2010
).
56.
M. E. J.
Newman
, “
Assortative mixing in networks
,”
Phys. Rev. Lett.
89
,
208701
(
2002
).
57.
T. W.
Valente
,
K.
Coronges
,
C.
Lakon
, and
E.
Costenbader
, “
How correlated are network centrality measures?
,”
Connect (Tor)
28
,
16
26
(
2008
).
58.
M.
Bastian
,
S.
Heymann
, and
M.
Jacomy
, “
Gephi: An open source software for exploring and manipulating networks
,” in
International AAAI Conference on Weblogs and Social Media
(
2009
).
You do not currently have access to this content.