We investigate multitarget search on complex networks and derive an exact expression for the mean random cover time that quantifies the expected time a walker needs to visit multiple targets. Based on this, we recover and extend some interesting results of multitarget search on networks. Specifically, we observe the logarithmic increase of the global mean random cover time with the target number for a broad range of random search processes, including generic random walks, biased random walks, and maximal entropy random walks. We show that the logarithmic growth pattern is a universal feature of multi-target search on networks by using the annealed network approach and the Sherman-Morrison formula. Moreover, we find that for biased random walks, the global mean random cover time can be minimized, and that the corresponding optimal parameter also minimizes the global mean first passage time, pointing towards its robustness. Our findings further confirm that the logarithmic growth pattern is a universal law governing multitarget search in confined media.

1.
J. D.
Noh
and
H.
Rieger
, “
Random walks on complex networks
,”
Phys. Rev. Lett.
92
,
118701
(
2004
).
2.
M.
Starnini
,
A.
Baronchelli
,
A.
Barrat
, and
R.
Pastor-Satorras
, “
Random walks on temporal networks
,”
Phys. Rev. E
85
,
056115
(
2012
).
3.
J. H.
Peng
,
E.
Agliari
, and
Z. Z.
Zhang
, “
Exact calculations of first-passage properties on the pseudofractal scale-free web
,”
Chaos
25
,
073118
(
2015
).
4.
T. F.
Weng
,
J.
Zhang
,
M.
Khajehnejad
,
M.
Small
,
R.
Zheng
, and
P.
Hui
, “
Navigation by anomalous random walks on complex networks
,”
Sci. Rep.
6
,
37547
(
2016
).
5.
A. L.
Lloyd
and
R. M.
May
, “
How viruses spread among computers and people
,”
Science
292
,
1316
1317
(
2001
).
6.
G. M.
Viswanathan
,
M. G. E.
da Luz
,
E. P.
Raposo
, and
H. E.
Stanley
,
The Physics of Foraging: An Introduction to Random Searches and Biological Encounters
(
Cambridge University Press
,
2011
).
7.
V. V.
Palyulin
,
A. V.
Chechkin
, and
R.
Metzler
, “
Lévy flights do not always optimize random blind search for sparse targets
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
2931
2936
(
2014
).
8.
D.
Ben-Avraham
and
S.
Havlin
,
Diffusion and Reactions in Fractals and Disordered Systems
(
Cambridge University Press
,
2000
).
9.
M. L.
Heuzé
,
P.
Vargas
,
M.
Chabaud
,
M. L.
Berre
,
Y. J.
Liu
,
O.
Collin
,
P.
Solanes
,
R.
Voituriez
,
M.
Piel
, and
A. M.
Lennon-Duménil
, “
Migration of dendritic cells: Physical principles, molecular mechanisms, and functional implications
,”
Immunol. Rev.
256
,
240
254
(
2013
).
10.
M.
Vergassola
,
E.
Villermaux
, and
B. I.
Shraiman
, “
Infotaxis as a strategy for searching without gradients
,”
Nature (London)
445
,
406
409
(
2007
).
11.
H.
Scher
and
C. H.
Wu
, “
Random walk theory of a trap-controlled hopping transport process
,”
Proc. Natl. Acad. Sci. U.S.A.
78
,
22
26
(
1981
).
12.
L. K.
Gallos
, “
Random walk and trapping processes on scale-free networks
,”
Phys. Rev. E
70
,
046116
(
2004
).
13.
E.
Agliari
,
R.
Burioni
, and
A.
Manzotti
, “
Effective target arrangement in a deterministic scale-free graph
,”
Phys. Rev. E
82
,
011118
(
2010
).
14.
B.
Meyer
,
E.
Agliari
,
O.
Bénichou
, and
R.
Voituriez
, “
Exact calculations of first-passage quantities on recursive networks
,”
Phys. Rev. E
85
,
026113
(
2012
).
15.
E.
Agliari
,
R.
Burioni
,
D.
Cassi
, and
F. M.
Neri
, “
Autocatalytic reaction on low-dimensional substrates
,”
Theor. Chem. Acc.
118
,
855
862
(
2007
).
16.
A.
Dembo
,
Y.
Peres
,
J.
Rosen
, and
O.
Zeitouni
, “
Cover times for brownian motion and random walks in two dimensions
,”
Ann. Math.
160
,
433
464
(
2004
).
17.
J. R. G.
Mendonca
, “
Numerical evidence against a conjecture on the cover time of planar graphs
,”
Phys. Rev. E
84
,
022103
(
2011
).
18.
A. M.
Nemirovsky
,
H. O.
Mártin
, and
M. D.
Coutinho-Filho
, “
Universality in the lattice-covering time problem
,”
Phys. Rev. A
41
,
761
767
(
1990
).
19.
K. R.
Coutinho
,
M. D.
Coutinho-Filho
,
M. A. F.
Gomes
, and
A. M.
Nemirovsky
, “
Partial and random lattice covering times in two dimensions
,”
Phys. Rev. Lett.
72
,
3745
(
1994
).
20.
M. S.
Nascimento
,
M. D.
Coutinho-Filho
, and
C. S.
Yokoi
, “
Partial and random covering times in one dimension
,”
Phys. Rev. E
63
,
066125
(
2001
).
21.
M.
Chupeau
,
O.
Bénichou
, and
R.
Voituriez
, “
Cover times of random searches
,”
Nat. Phys.
11
,
844
847
(
2015
).
22.
C. M.
Grinstead
and
J. L.
Snell
,
Introduction to Probability
(
American Mathematical Society
,
2006
).
23.
H.
Jeong
,
S. P.
Mason
,
A.-L.
Barabási
, and
Z. N.
Oltvai
, “
Lethality and centrality in protein networks
,”
Nature (London)
411
,
41
42
(
2001
).
24.
W. W.
Zachary
, “
An information flow model for conflict and fission in small groups
,”
J. Anthropol. Res.
33
,
452
473
(
1977
).
25.
D.
Baird
and
R. E.
Ulanowicz
, “
The seasonal dynamics of the chesapeake bay ecosystem
,”
Ecol. Monogr.
59
,
329
364
(
1989
).
26.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
27.
P.
Erdos
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci.
5
,
17
60
(
1960
).
28.
D.
Lusseau
,
K.
Schneider
,
O. J.
Boisseau
,
P.
Haase
,
E.
Slooten
, and
S. M.
Dawson
, “
The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations
,”
Behav. Ecol. Sociobiol.
54
,
396
405
(
2003
).
29.
S. N.
Dorogovtsev
,
A. V.
Goltsev
, and
J. F. F.
Mendes
, “
Critical phenomena in complex networks
,”
Rev. Mod. Phys.
80
,
1275
1335
(
2008
).
30.
J.
Sherman
and
W. J.
Morrison
, “
Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
,”
Ann. Math. Stat.
21
,
124
127
(
1950
).
31.
M. E. J.
Newman
, “
Finding community structure in networks using the eigenvectors of matrices
,”
Phys. Rev. E
74
,
036104
(
2006
).
32.
R.
Milo
,
S.
Shen-Orr
,
S.
Itzkovitz
,
N.
Kashtan
,
D.
Chklovskii
, and
U.
Alon
, “
Network motifs: Simple building blocks of complex networks
,”
Science
298
,
824
827
(
2002
).
33.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
7826
(
2002
).
34.
H.
Jeong
,
B.
Tombor
,
R.
Albert
,
Z. N.
Oltvai
, and
A.-L.
Barabási
, “
The large-scale organization of metabolic networks
,”
Nature (London)
407
,
651
654
(
2000
).
35.
M.
Ripeanu
,
I.
Foster
, and
A.
Lamnitchi
, “
Mapping the gnutella network: Properties of large-scale peer-to-peer systems and implications for system design
,” preprint arXiv:cs/0209028 (
2002
).
36.
A.
Fronczak
and
P.
Fronczak
, “
Biased random walks in complex networks: The role of local navigation rules
,”
Phys. Rev. E
80
,
016107
(
2009
).
37.
M.
Bonaventura
,
V.
Nicosia
, and
V.
Latora
, “
Characteristic times of biased random walks on complex networks
,”
Phys. Rev. E
89
,
012803
(
2014
).
38.
Y.
Lin
and
Z. Z.
Zhang
, “
Mean first passage time for maximal-entropy random walks in complex networks
,”
Sci. Rep.
4
,
5365
(
2014
).
39.
Z.
Burda
,
J.
Duda
,
J. M.
Luck
, and
B.
Waclaw
, “
Localization of the maximal entropy random walk
,”
Phys. Rev. Lett.
102
,
160602
(
2009
).
40.
J. K.
Ochab
and
Z.
Burda
, “
Maximal entropy random walk in community detection
,”
Eur. Phys. J. Spec. Top.
216
,
73
81
(
2013
).
41.
T. F.
Weng
,
M.
Small
,
J.
Zhang
, and
P.
Hui
, “
Lévy walk navigation in complex networks: A distinct relation between optimal transport exponent and network dimension
,”
Sci. Rep.
5
,
17309
(
2015
).
42.
V.
Tejedor
,
R.
Voituriez
, and
O.
Bénichou
, “
Optimizing persistent random searches
,”
Phys. Rev. Lett.
108
,
088103
(
2012
).
43.
T. G.
Mattos
,
C.
Mejía-Monasterio
,
R.
Metzler
, and
G.
Oshanin
, “
First passages in bounded domains: When is the mean first passage time meaningful?
,”
Phys. Rev. E
86
,
031143
(
2012
).
44.
C.
Mejía-Monasterio
,
G.
Oshanin
, and
G.
Schehr
, “
First passages for a search by a swarm of independent random searchers
,”
J. Stat. Mech. Theor. Exp.
2011
,
P06022
.
45.
Z. Z.
Zhang
,
Y. B.
Sheng
,
Z. Y.
Hu
, and
G. R.
Chen
, “
Optimal and suboptimal networks for efficient navigation measured by mean-first passage time of random walks
,”
Chaos
22
,
043129
(
2012
).
You do not currently have access to this content.