In the last decade, it has been shown that a large class of phase oscillator models admit low dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N of oscillators. The question of whether the macroscopic dynamics of other similar systems also have a low dimensional description in the infinite N limit has, however, remained elusive. In this paper, we show how techniques originally designed to analyze noisy experimental chaotic time series can be used to identify effective low dimensional macroscopic descriptions from simulations with a finite number of elements. We illustrate and verify the effectiveness of our approach by applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional description. By using this description, we show that one can calculate dynamical invariants such as Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate short-term predictions of the macroscopic dynamics.

1.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
,
2391
(
1993
).
2.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
3.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
2003
).
4.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
2003
).
5.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
6.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
7.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
New York
,
1984
).
8.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
(
1994
).
9.
C. J.
Goebel
, “
Comment on ‘Constants of motion for superconductor arrays
,”
Physica D
80
,
18
(
1995
).
10.
S. A.
Marvel
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action
,”
Chaos
19
,
043104
(
2009
).
11.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
12.
W. S.
Lee
,
E.
Ott
, and
T. M.
Antonsen
, “
Large coupled oscillator systems with heterogeneous interaction delays
,”
Phys. Rev. Lett.
103
,
044101
(
2009
).
13.
L. M.
Childs
and
S. H.
Strogatz
, “
Stability diagram for the forced Kuramoto model
,”
Chaos
18
,
043128
(
2008
).
14.
A.
Pikovsky
and
M.
Rosenblum
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
,
264103
(
2008
).
15.
P. S.
Skardal
and
J. G.
Restrepo
, “
Hierarchical synchrony of phase oscillators in modular networks
,”
Phys. Rev. E
85
,
016208
(
2012
).
16.
J. G.
Restrepo
and
E.
Ott
, “
Mean-field theory of assortative networks of phase oscillators
,”
Europhys. Lett.
107
,
60006
(
2014
).
17.
P. S.
Skardal
,
J. G.
Restrepo
, and
E.
Ott
, “
Frequency assortativity can induce chaos in oscillator networks
,”
Phys. Rev. E
91
,
060902(R)
(
2015
).
18.
D.
Pazó
and
E.
Montbrió
, “
Low-dimensional dynamics of populations of pulse-coupled oscillators
,”
Phys. Rev. X
4
,
011009
(
2014
).
19.
T.
Luke
,
E.
Barreto
, and
P.
So
, “
Macroscopic complexity from an autonomous network of networks of theta neurons
,”
Front. Comput. Neurosci.
8
,
145
(
2014
).
20.
C.
Laing
, “
Derivation of a neural field model from a network of theta neurons
,”
Phys. Rev. E
90
,
010901(R)
(
2014
).
21.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
, “
Macroscopic description for networks of spiking neurons
,”
Phys. Rev. X
5
,
021028
(
2015
).
22.
C.
Laing
, “
Exact neural fields incorporating gap junctions
,”
SIAM J. Appl. Dyn. Syst.
14
,
1899
(
2015
).
23.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems an Turbulence
, edited by
D. A.
Rand
and
L. S.
Young
(
Springer
,
Berlin, Germany
,
1982
).
24.
P. C.
Matthews
and
S. H.
Strogatz
, “
Phase diagram for the collective behavior of limit-cycle oscillators
,”
Phys. Rev. Lett.
65
,
1701
(
1990
).
25.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Amplitude death in an array of limit-cycle oscillators
,”
J. Stat. Phys.
60
,
245
(
1990
).
26.
P. C.
Matthews
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Dynamics of large systems of coupled nonlinear oscillators
,”
Physica D
52
,
293
(
1991
).
27.
V.
Hakim
and
W.-J.
Rappel
, “
Dynamics of the globally coupled complex Ginzburg-Landau equation
,”
Phys. Rev. A
46
,
R7347(R)
(
1992
).
28.
N.
Nakagawa
and
Y.
Kuramoto
, “
Collective chaos in a population of globally coupled oscillators
,”
Prog. Theor. Phys.
89
,
313
(
1993
).
29.
K. A.
Takeuchi
and
H.
Chaté
, “
Collective Lyapunov modes
,”
J. Phys. A
46
,
254007
(
2013
).
30.
W. L.
Ku
,
M.
Girvan
, and
E.
Ott
, “
Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states
,”
Chaos
25
,
123122
(
2015
).
31.
M.
Ding
,
C.
Grebogi
,
E.
Ott
,
T.
Sauer
, and
J. A.
Yorke
, “
Estimating correlation dimension from a chaotic time series: When does plateau onset occur
,”
Physica D
69
,
404
(
1993
).
32.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Physica D
110
,
43
(
1997
).
33.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
(
1992
).
34.
H. D. I.
Abarbanel
and
M. B.
Kennel
, “
Local false nearest neighbors and dynamical dimensions from observed chaotic data
,”
Phys. Rev. E
47
,
3057
(
1993
).
35.
J. L.
Kaplan
and
J. A.
Yorke
, “
Chaotic behavior of multidimensional difference equations
,” in
Functional Differential Equations and Approximations of Fixed Points
, edited by
H.-O.
Peitgen
and
H.-O.
Walter
(
Springer-Verlag
,
New York/Berlin
,
1979
).
36.
D. A.
Russell
,
J. D.
Hanson
, and
E.
Ott
, “
Dimension of strange attractors
,”
Phys. Rev. Lett.
45
,
1175
(
1980
).
37.
J. D.
Farmer
,
E.
Ott
, and
J. A.
Yorke
, “
The dimension of chaotic attractors
,”
Physica D
7
,
153
(
1983
).
38.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
(
1983
).
39.
A.
Brandstater
and
H. L.
Swinney
, “
Strange attractors in weakly turbulent Couette-Taylor flow
,”
Phys. Rev. A
35
,
2207
(
1987
).
You do not currently have access to this content.