This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and the law of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as α-stable Lévy flights. Coupling distances measure the proximity of the empirical law of the tails of the jump increments and a given power law distribution. In particular, they yield an upper bound for the distance of the respective laws on path space. We prove rates of convergence comparable to the rates of the central limit theorem which are confirmed by numerical simulations. Our method applied to a paleoclimate time series of glacial climate variability confirms its heavy tail behavior. In addition, this approach gives evidence for heavy tails in datasets of precipitable water vapor of the Western Tropical Pacific.

1.
D.
Applebaum
,
Lévy Processes and Stochastic Calculus
(
Cambridge University Press
,
2009
).
2.
R.
Benzi
,
G.
Parisi
,
A.
Sutera
, and
A.
Vulpiani
, “
Stochastic resonance in climate change
,”
Tellus
34
,
10
16
(
1982
).
3.
N.
Berglund
and
D.
Landon
, “
Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model
,”
Nonlinearity
25
,
2303
2335
(
2012
).
4.
M.
Csörgö
and
C.
Horváth
, “
On the distributions of Lp norms and weighted uniform empirical and quantile processes
,”
Ann. Probab.
16
(
1
),
142
161
(
1988
).
5.
H. A.
Dijkstra
,
Nonlinear Climate Dynamics
(
Cambridge University Press
,
2013
).
6.
P. D.
Ditlevsen
, “
Observation of a stable noise induced millennial climate changes from an ice-core record
,”
Geophys. Res. Lett.
26
(
10
),
1441
1444
, doi: (
1999
).
7.
C.
Doss
and
M.
Thieullen
, “
Oscillations and random perturbations of a FitzHugh-Nagumo system
,” Preprint arXiv:hal-00395284 (
2009
).
8.
R. M.
Dudley
,
Uniform Central Limit Theorems
(
Cambridge University Press
,
1999
).
9.
K.
Fuhrer
,
A.
Neftel
,
M.
Anklin
, and
V.
Maggi
, “
Continuous measurement of hydrogen-peroxide, formaldehyde, calcium and ammonium concentrations along the new GRIP Ice Core from Summit, Central Greenland
,”
Atmos. Environ. Sect. A
27
,
1873
1880
(
1993
).
10.
J.
Gairing
, “
Speed of convergence of discrete power variations of jump diffusions
,” Diplom thesis (
Humboldt-Universität zu Berlin
,
2011
).
11.
J.
Gairing
and
P.
Imkeller
, “
Stable CLTs and rates for power variation of α-stable Lévy processes
,”
Methodol. Comput. Appl. Probab.
17
(
1
),
1
18
(
2013
).
12.
A.
Debussche
,
M.
Högele
, and
P.
Imkeller
,
The Dynamics of Non-Linear Reaction-Diffusion Equations with Small Lévy Noise
, Springer Lecture Notes in Mathematics, Vol.
2085
(Springer,
2013
).
13.
J.
Gairing
,
M.
Högele
,
T.
Kosenkova
, and
A.
Kulik
, “
Coupling distances between Lévy measures and applications to noise sensitivity of SDE
,”
Stochastics Dyn.
15
(
2
),
1550009
(
2015
).
14.
J.
Gairing
,
M.
Högele
,
T.
Kosenkova
, and
A.
Kulik
, “
On the calibration of lévy driven time series with coupling distances with an application in paleoclimate
,” in Mathematical Paradigms of Climate Sciences,
Springer-INdAM Series
, Vol.
15
(
Springer
,
Milan/Heidelberg
,
2016
), ISBN 978-3-319-39091-8.
15.
J.
Gairing
,
M.
Högele
, and
T.
Kosenkova
, See https://arxiv.org/abs/1511.07666 for Transportation distances and noise sensitivity of multipicative Lévy SDE with applications.
16.
K.
Hasselmann
, “
Stochastic climate models: Part I. Theory
,”
Tellus
28
,
473
485
(
1976
).
17.
C.
Hein
,
P.
Imkeller
, and
I.
Pavlyukevich
, “
Limit theorems for p-variations of solutions of SDEs driven by additive stable Lévy noise and model selection for paleo-climatic data
,”
Interdiscip. Math. Sci.
8
,
137
150
(
2009
).
18.
M.
Högele
and
I.
Pavlyukevich
, “
The exit problem from the neighborhood of a global attractor for heavy-tailed Lévy diffusions
,”
Stochastic Anal. Appl.
32
(
1
),
163
190
(
2014
).
19.
P.
Imkeller
and
A.
Monahan
, “
Conceptual stochastic climate models
,”
Stochastics Dyn.
2
,
311
326
(
2002
).
20.
P.
Imkeller
, “
Energy balance models: Viewed from stochastic dynamics
,”
Prog. Probab.
49
,
213
240
(
2001
).
21.
P.
Imkeller
and
J.-S.
von Storch
,
Stochastic Climate Models. Progress in Probability Series
, Vol. 44 (
Springer Basel
,
2001
).
22.
P.
Imkeller
and
I.
Pavlyukevich
, “
First exit times of SDEs driven by stable Lévy processes
,”
Stochastic Process. Appl.
116
(
4
),
611
642
(
2006
).
23.
A. H.
Monahan
,
J.
Alexander
, and
A. J.
Weaver
, “
Stochastic models of meridional overturning circulation: Time scales and patterns of variablility
,”
Philos. Trans. R. Soc. A
366
,
2527
2544
(
2008
).
24.
G. C.
Papanicolau
and
W.
Kohler
, “
Asymptotic theory of mixing stochastic ordinary differential equations
,”
Commun. Pure Appl. Math.
XXVII
,
641
668
(
1974
).
25.
I.
Pavlyukevich
, “
First exit times of solutions of stochastic differential equations with heavy tails
,”
Stochastics Dyn.
11
(
2/3
),
1
25
(
2011
).
26.
O.
Peters
,
A.
Deluca
,
A.
Corral
,
J. D.
Neelin
, and
C. E.
Holloway
, “
Universality of rain event size distributions
,”
J. Stat. Mech.: Theory Exp.
2010
(
2010
).
27.
S. T.
Rachev
and
L.
Rüschendorf
, “
Mass transportation problems. Vol. I: Theory, vol. II: applications
,”
Probability and Its Applications
(
Springer-Verlag
,
New York
1998
).
28.
S.
Rahmstorf
, “
Timing of abrupt climate change: a precise clock
,”
Geophys. Res. Lett.
30
,
1510
, doi: (
2003
).
29.
K.
Sato
, “
Lévy processes and infinitely divisible distributions
,” in
Cambridge Studies in Advanced Mathematics
(
Cambridge University Press
,
1999
), Vol. 68.
30.
S. N.
Stechmann
and
J. D.
Neelin
, “
A stochastic model for the transition to strong convection
,”
J. Atmos. Sci.
68
,
2955
2970
(
2011
).
31.
S. N.
Stechmann
and
J. D.
Neelin
, “
First-passage-time prototypes for precipitation statistics
,”
J. Atmos. Sci.
71
,
3269
3291
(
2014
).
32.
X.
Shen
,
H.
Zhang
,
Y.
Xu
, and
S.
Meng
, “
Observation of α-stable noise in the laser gyroscope data
,”
IEEE Sens. J.
16
,
1998
2003
(
2016
).
33.
H. C.
Tuckwell
,
R.
Rodriguez
, and
F. Y. M.
Wan
, “
Determination of firing times for the stochastic Fitzhugh-Nagumo neuronal model
,”
Neural Comput.
15
,
143
159
(
2003
).
34.
S.
Xie
 et al., “
ARM climate modeling best estimate data: A new data product for climate studies
,”
Bull. Am. Meteorol. Soc.
91
,
13
20
(
2010
).
You do not currently have access to this content.