Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, reap public goods benefits, which are shares of the contributions amplified by a synergy factor. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a complex network in which players adapt to their environment in order to increase individual payoffs relative to past payoffs parameterized by greediness. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players' strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.

1.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
2.
M.
Archetti
and
I.
Scheuring
, “
Review: Game theory of public goods in one-shot social dilemmas without assortment
,”
J Theor Biol
299
,
9
20
(
2012
).
3.
R.
Axelrod
and
W. D.
Hamilton
, “
The evolution of cooperation
,”
Science
211
(
4489
),
1390
1396
(
1981
).
4.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
(
5439
),
509
512
(
1999
).
5.
C.
Biely
,
K.
Dragosits
, and
S.
Thurner
, “
The prisoner's dilemma on co-evolving networks under perfect rationality
,”
Physica D: Nonlinear Phenom.
228
(
1
),
40
48
(
2007
).
6.
H.
Brandt
,
C.
Hauert
, and
K.
Sigmund
, “
Punishment and reputation in spatial public goods games
,”
Proc. R. Soc. London B: Biol. Sci.
270
(
1519
),
1099
1104
(
2003
).
7.
H.
Ebel
and
S.
Bornholdt
, “
Evolutionary games and the emergence of complex networks
,” e-print arXiv:cond-mat/0211666.
8.
P.
Erdős
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci
5
(
1
),
17
61
(
1960
).
9.
J.
Gómez-Gardeñes
,
M.
Romance
,
R.
Criado
,
D.
Vilone
, and
A.
Sánchez
, “
Evolutionary games defined at the network mesoscale: The public goods game
,”
Chaos
21
(
1
),
016113
(
2011
).
10.
G.
Hardin
, “
The tragedy of the commons
,”
Science
162
(
3859
),
1243
1248
(
1968
).
11.
D.
Helbing
,
A.
Szolnoki
,
M.
Perc
, and
G.
Szabó
, “
Punish, but not too hard: How costly punishment spreads in the spatial public goods game
,”
New J. Phys.
12
(
8
),
083005
(
2010
).
12.
D.
Kahneman
,
Thinking, Fast and Slow
(
Farrar, Strous and Giroux
,
New York
,
2011
).
13.
D.
Kahneman
and
A.
Tversky
, “
Prospect theory: An analysis of decision under risk
,”
Econometrica
47
,
263
291
(
1979
).
14.
T.
Konno
, “
A condition for cooperation in a game on complex networks
,”
J. Theor. Biol.
269
(
1
),
224
233
(
2011
).
15.
M.
Kuperman
and
G.
Abramson
, “
Small world effect in an epidemiological model
,”
Phys. Rev. Lett.
86
(
13
),
2909
2912
(March
2001
).
16.
M. A.
Nowak
, “
Five rules for the evolution of cooperation
,”
Science
314
(
5805
),
1560
1563
(
2006
).
17.
M. A.
Nowak
,
S.
Bonhoeffer
, and
R. M.
May
, “
Spatial games and the maintenance of cooperation
,”
Proc. Natl. Acad. Sci.
91
(
11
),
4877
4881
(
1994
).
18.
H.
Ohtsuki
,
C.
Hauert
,
E.
Lieberman
, and
M. A.
Nowak
, “
A simple rule for the evolution of cooperation on graphs and social networks
,”
Nature
441
(
7092
),
502
505
(
2006
).
19.
H.
Ohtsuki
and
M. A.
Nowak
, “
The replicator equation on graphs
,”
J. Theor. Biol.
243
(
1
),
86
97
(
2006
).
20.
J. M.
Pacheco
,
A.
Traulsen
, and
M. A.
Nowak
, “
Active linking in evolutionary games
,”
J. Theor. Biol.
243
(
3
),
437
443
(
2006
).
21.
J. M.
Pacheco
,
A.
Traulsen
, and
M. A.
Nowak
, “
Coevolution of strategy and structure in complex networks with dynamical linking
,”
Phys. Rev. Lett.
97
(
25
),
258103
(
2006
).
22.
M.
Perc
,
J.
Gómez-Gardeñes
,
A.
Szolnoki
,
L. M.
Floría
, and
Y.
Moreno
, “
Evolutionary dynamics of group interactions on structured populations: A review
,”
J. R. Soc. Interface
10
(
80
),
20120997
(
2013
).
23.
M.
Perc
and
A.
Szolnoki
, “
Coevolutionary games—A mini review
,”
Biosystems
99
(
2
),
109
125
(
2010
).
24.
C. P.
Roca
and
D.
Helbing
, “
Emergence of social cohesion in a model society of greedy, mobile individuals
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
28
),
11370
11374
(
2011
).
25.
F. C.
Santos
,
J. M.
Pacheco
, and
T.
Lenaerts
, “
Evolutionary dynamics of social dilemmas in structured heterogeneous populations
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
9
),
3490
3494
(
2006
).
26.
F. C.
Santos
,
J. F.
Rodrigues
, and
J. M.
Pacheco
, “
Graph topology plays a determinant role in the evolution of cooperation
,”
Proc. R. Soc. B
273
(
1582
),
51
55
(
2006
).
27.
F. C.
Santos
,
M. D.
Santos
, and
J. M.
Pacheco
, “
Social diversity promotes the emergence of cooperation in public goods games
,”
Nature
454
(
7201
),
213
216
(
2008
).
28.
H. A.
Simon
, “
A behavioral model of rational choice
,”
Q. J. Econ.
99
,
118
(
1955
).
29.
G.
Szabó
and
G.
Fáth
, “
Evolutionary games on graphs
,”
Phys. Rep.
446
(
4–6
),
97
216
(
2007
).
30.
A.
Traulsen
,
D.
Semmann
,
R. D.
Sommerfeld
,
H.-J.
Krambeck
, and
M.
Milinski
, “
Human strategy updating in evolutionary games
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
7
),
2962
2966
(Feb
2010
).
31.
J. Y.
Wakano
,
M. A.
Nowak
, and
C.
Hauert
, “
Spatial dynamics of ecological public goods
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
19
),
7910
7914
(May
2009
).
32.
M. G.
Zimmermann
,
V. M.
Eguíluz
, and
M.
San Miguel
, “
Coevolution of dynamical states and interactions in dynamic networks
,”
Phys. Rev. E
69
(
6
),
065102
(
2004
).
You do not currently have access to this content.