We review and test twelve different approaches to the detection of finite-time coherent material structures in two-dimensional, temporally aperiodic flows. We consider both mathematical methods and diagnostic scalar fields, comparing their performance on three benchmark examples: the quasiperiodically forced Bickley jet, a two-dimensional turbulence simulation, and an observational wind velocity field from Jupiter's atmosphere. A close inspection of the results reveals that the various methods often produce very different predictions for coherent structures, once they are evaluated beyond heuristic visual assessment. As we find by passive advection of the coherent set candidates, false positives and negatives can be produced even by some of the mathematically justified methods due to the ineffectiveness of their underlying coherence principles in certain flow configurations. We summarize the inferred strengths and weaknesses of each method, and make general recommendations for minimal self-consistency requirements that any Lagrangian coherence detection technique should satisfy.

1.
F. J.
Beron-Vera
,
M. G.
Brown
,
M. J.
Olascoaga
,
I. I.
Rypina
,
H.
Koçak
, and
I. A.
Udovydchenkov
, “
Zonal jets as transport barriers in planetary atmospheres
,”
J. Atmos. Sci.
65
,
3316
3326
(
2008
).
2.
G.
Haller
and
F. J.
Beron-Vera
, “
Coherent Lagrangian vortices: The black holes of turbulence
,”
J. Fluid Mech.
731
,
R4
(
2013
).
3.
C. S.
Harrison
,
D. A.
Siegel
, and
S.
Mitarai
, “
Filamentation and eddy-eddy interactions in marine larval accumulation and transport
,”
Mar. Ecol. Prog. Ser.
472
,
27
44
(
2013
).
4.
C.
Dong
,
J. C.
McWilliams
,
Y.
Liu
, and
D.
Chen
, “
Global heat and salt transports by eddy movement
,”
Nat. Commun.
5
,
3294
(
2014
).
5.
J. O.
Dabiri
,
M.
Gharib
,
S. P.
Colin
, and
J. H.
Costello
, “
Vortex motion in the ocean: In situ visualization of jellyfish swimming and feeding flows
,”
Phys. Fluids
17
,
091108
(
2005
).
6.
J.
Peng
and
J. O.
Dabiri
, “
An overview of a Lagrangian method for analysis of animal wake dynamics
,”
J. Exp. Biol.
211
,
280
287
(
2007
).
7.
F.
Huhn
,
W. M.
van Rees
,
M.
Gazzola
,
D.
Rossinelli
,
G.
Haller
, and
P.
Koumoutsakos
, “
Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices
,”
Chaos
25
,
087405
(
2015
).
8.
D.
Lipinski
,
B.
Cardwell
, and
K.
Mohseni
, “
A Lagrangian analysis of a two-dimensional airfoil with vortex shedding
,”
J. Phys. A: Math. Theor.
41
,
344011
(
2008
).
9.
M. A.
Green
,
C. W.
Rowley
, and
A. J.
Smits
, “
Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows
,”
Chaos
20
,
017510
(
2010
).
10.
T. B.
Le
and
F.
Sotiropoulos
, “
Fluidstructure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle
,”
J. Comput. Phys.
244
,
41
62
(
2013
), Multi-scale Modeling and Simulation of Biological Systems.
11.
T.
Peacock
and
J.
Dabiri
, “
Introduction to focus issue: Lagrangian coherent structures
,”
Chaos
20
,
017501
(
2010
).
12.
T.
Peacock
and
G.
Haller
, “
Lagrangian coherent structures: The hidden skeleton of fluid flows
,”
Phys. Today
66
(
2
),
41
47
(
2013
).
13.
T.
Peacock
,
G.
Froyland
, and
G.
Haller
, “
Introduction to focus issue: Objective detection of coherent structures
,”
Chaos
25
,
087201
(
2015
).
14.
S. C.
Shadden
, “
Lagrangian coherent structures
,” in
Transport and Mixing in Laminar Flows
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2011
), pp.
59
89
.
15.
G.
Haller
, “
Lagrangian coherent structures
,”
Annu. Rev. Fluid Mech.
47
,
137
162
(
2015
).
16.
M. R.
Allshouse
and
T.
Peacock
, “
Lagrangian based methods for coherent structure detection
,”
Chaos
25
,
097617
(
2015
).
17.
F. J.
Beron-Vera
,
Y.
Wang
,
M. J.
Olascoaga
,
G. J.
Goni
, and
G.
Haller
, “
Objective detection of oceanic eddies and the Agulhas leakage
,”
J. Phys. Oceanogr.
43
,
1426
1438
(
2013
).
18.
G.
Haller
,
A.
Hadjighasem
,
M.
Farazmand
, and
F.
Huhn
, “
Defining coherent vortices objectively from the vorticity
,”
J. Fluid Mech.
795
,
136
173
(
2016
).
19.
T.
Ma
and
E. M.
Bollt
, “
Shape coherence and finite-time curvature evolution
,”
Int. J. Bifurcation Chaos
25
,
1550076
(
2015
).
20.
C.
Truesdell
and
W.
Noll
,
The Non-Linear Field Theories of Mechanics
(
Springer
,
2004
).
21.
H. J.
Lugt
, “
The dilemma of defining a vortex
,” in
Recent Developments in Theoretical and Experimental Fluid Mechanics: Compressible and Incompressible Flows
(
Springer
,
Berlin, Heidelberg
,
1979
), pp.
309
321
.
22.
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Phys. D (Amsterdam, Neth.)
147
,
352
370
(
2000
).
23.
G.
Haller
, “
Lagrangian coherent structures from approximate velocity data
,”
Phys. Fluids
14
,
1851
1861
(
2002
).
24.
M. E.
Gurtin
,
An Introduction to Continuum Mechanics
(
Academic Press
,
1982
), Vol.
158
.
25.
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
M. G.
Brown
,
H.
Koçak
, and
I. I.
Rypina
, “
Invariant-tori-like Lagrangian coherent structures in geophysical flows
,”
Chaos
20
,
017514
(
2010
).
26.
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
M. G.
Brown
, and
H.
Koçak
, “
Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere
,”
J. Atmos. Sci.
69
,
753
767
(
2012
).
27.
M.
Farazmand
,
D.
Blazevski
, and
G.
Haller
, “
Shearless transport barriers in unsteady two-dimensional flows and maps
,”
Phys. D (Amsterdam, Neth.)
278–279
,
44
57
(
2014
).
28.
V.
Artale
,
G.
Boffetta
,
A.
Celani
,
M.
Cencini
, and
A.
Vulpiani
, “
Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient
,”
Phys. Fluids
9
,
3162
3171
(
1997
).
29.
E.
Aurell
,
G.
Boffetta
,
A.
Crisanti
,
G.
Paladin
, and
A.
Vulpiani
, “
Predictability in the large: An extension of the concept of Lyapunov exponent
,”
J. Phys. A: Math. Gen.
30
,
1
26
(
1997
).
30.
B.
Joseph
and
B.
Legras
, “
Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex
,”
J. Atmos. Sci.
59
,
1198
1212
(
2002
).
31.
F.
d'Ovidio
,
V.
Fernández
,
E.
Hernández-García
, and
C.
López
, “
Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents
,”
Geophys. Res. Lett.
31
,
L17203
, doi: (
2004
).
32.
J. H.
Bettencourt
,
C.
López
, and
E.
Hernández-García
, “
Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent
,”
J. Phys. A: Math. Theor.
46
,
254022
(
2013
).
33.
D.
Karrasch
and
G.
Haller
, “
Do finite-size Lyapunov exponents detect coherent structures?
,”
Chaos
23
,
043126
(
2013
).
34.
I.
Mezić
,
S.
Loire
,
V. A.
Fonoberov
, and
P.
Hogan
, “
A new mixing diagnostic and gulf oil spill movement
,”
Science
330
,
486
489
(
2010
).
35.
I. S.
Liu
, “
On the transformation property of the deformation gradient under a change of frame
,”
J. Elasticity
71
,
73
80
(
2003
).
36.
I.
Mezić
, personal communication (
2015
).
37.
A. M.
Mancho
,
S.
Wiggins
,
J.
Curbelo
, and
C.
Mendoza
, “
Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
3530
3557
(
2013
).
38.
A.
Ruiz-Herrera
, “
Some examples related to the method of Lagrangian descriptors
,”
Chaos
25
,
063112
(
2015
).
39.
A.
Ruiz-Herrera
, “
Performance of Lagrangian descriptors and their variants in incompressible flows
,”
Chaos
26
,
103116
(
2016
).
40.
I. I.
Rypina
,
S. E.
Scott
,
L. J.
Pratt
, and
M. G.
Brown
, “
Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures
,”
Nonlinear Processes Geophys.
18
,
977
987
(
2011
).
41.
S. E.
Scott
,
T. C.
Redd
,
L.
Kuznetsov
,
I.
Mezić
, and
C. K.
Jones
, “
Capturing deviation from ergodicity at different scales
,”
Phys. D (Amsterdam, Neth.)
238
,
1668
1679
(
2009
).
42.
T.
Ma
and
E. M.
Bollt
, “
Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting
,”
SIAM J. Appl. Dyn. Syst.
13
,
1106
1136
(
2014
).
43.
M.
Dellnitz
and
O.
Junge
, “
On the approximation of complicated dynamical behavior
,”
SIAM J. Numer. Anal.
36
,
491
515
(
1999
).
44.
G.
Froyland
, “
Statistically optimal almost-invariant sets
,”
Phys. D (Amsterdam, Neth.)
200
,
205
219
(
2005
).
45.
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifolds Connecting probabilistic and geometric descriptions of coherent structures in flows
,”
Phys. D (Amsterdam, Neth.)
238
,
1507
1523
(
2009
).
46.
G.
Froyland
,
S.
Lloyd
, and
N.
Santitissadeekorn
, “
Coherent sets for nonautonomous dynamical systems
,”
Phys. D (Amsterdam, Neth.)
239
,
1527
1541
(
2010
).
47.
G.
Froyland
,
N.
Santitissadeekorn
, and
A.
Monahan
, “
Transport in time-dependent dynamical systems: Finite-time coherent sets
,”
Chaos
20
,
043116
(
2010
).
48.
G.
Froyland
, “
An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems
,”
Phys. D (Amsterdam, Neth.)
250
,
1
19
(
2013
).
49.
G.
Froyland
and
K.
Padberg-Gehle
, “
Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion
,” in
Ergodic Theory, Open Dynamics, and Coherent Structures
(
Springer
,
New York, NY
,
2014
), pp.
171
216
.
50.
M. O.
Williams
,
I. I.
Rypina
, and
C. W.
Rowley
, “
Identifying finite-time coherent sets from limited quantities of Lagrangian data
,”
Chaos
25
,
087408
(
2015
).
51.
A.
Denner
,
O.
Junge
, and
D.
Matthes
, “
Computing coherent sets using the Fokker-Planck equation
,”
Journal of Computational Dynamics
3
,
163
177
(
2016
).
52.
R.
Banisch
and
P.
Koltai
, “
Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets
,”
Chaos
27
,
035804
(
2017
).
53.
G.
Froyland
, “
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
,”
Nonlinearity
28
,
3587
(
2015
).
54.
M.
Belkin
and
P.
Niyogi
, “
Laplacian eigenmaps for dimensionality reduction and data representation
,”
Neural Comput.
15
,
1373
1396
(
2003
).
55.
G.
Froyland
and
O.
Junge
, “
On fast computation of finite-time coherent sets using radial basis functions
,”
Chaos
25
,
087409
(
2015
).
56.
G.
Froyland
and
E.
Kwok
, “
A dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds
,” preprint arXiv:1610.01128 (
2016
).
57.
D.
Karrasch
and
J.
Keller
, “
A geometric heat-flow theory of Lagrangian coherent structures
,” preprint arXiv:1608.05598 (
2016
).
58.
T.
Ma
and
E. M.
Bollt
, “
Relatively coherent sets as a hierarchical partition method
,”
Int. J. Bifurcation Chaos
23
,
1330026
(
2013
).
59.
G.
Froyland
and
K.
Padberg-Gehle
, “
A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data
,”
Chaos
25
,
087406
(
2015
).
60.
J. C.
Bezdek
,
Pattern Recognition with Fuzzy Objective Function Algorithms
(
Kluwer Academic Publishers
,
Norwell, MA, USA
,
1981
).
61.
J. C.
Dunn
, “
A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
,”
J. Cybern.
3
,
32
57
(
1973
).
62.
S.
Lloyd
, “
Least squares quantization in PCM
,”
IEEE Trans. Inf. Theory
28
,
129
137
(
2006
).
63.
A.
Hadjighasem
,
D.
Karrasch
,
H.
Teramoto
, and
G.
Haller
, “
Spectral-clustering approach to Lagrangian vortex detection
,”
Phys. Rev. E
93
,
063107
(
2016
).
64.
J. B.
Shi
and
J.
Malik
, “
Normalized cuts and image segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
22
,
888
905
(
2000
).
65.
R.
Bhatia
,
Matrix Analysis
(
Springer Science & Business Media
,
1997
), Vol.
169
.
66.
S. X.
Yu
and
J.
Shi
, “
Multiclass spectral clustering
,” in
Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003
(
IEEE
,
2003
), pp.
313
319
.
67.
A.
Hadjighasem
and
G.
Haller
, “
Level set formulation of two-dimensional Lagrangian vortex detection methods
,”
Chaos
26
,
103102
(
2016
).
68.
M.
Farazmand
and
G.
Haller
, “
Computing Lagrangian coherent structures from their variational theory
,”
Chaos
22
,
013128
(
2012
).
69.
D.
Karrasch
,
F.
Huhn
, and
G.
Haller
, “
Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows
,”
Proc. R. Soc. London A
471
,
20140639
(
2014
).
70.
M.
Serra
and
G.
Haller
, “
Efficient computation of null geodesics with applications to coherent vortex detection
,”
Proc. R. Soc. London A
473
,
20160807
(
2017
).
71.
D.
Blazevski
and
G.
Haller
, “
Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows
,”
Phys. D (Amsterdam, Neth.)
273–274
,
46
62
(
2014
).
72.
D.
Oettinger
and
G.
Haller
, “
An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows
,”
Chaos
26
,
103111
(
2016
).
73.
M.
Farazmand
and
G.
Haller
, “
Polar rotation angle identifies elliptic islands in unsteady dynamical systems
,”
Phys. D (Amsterdam, Neth.)
315
,
1
12
(
2016
).
74.
G.
Haller
, “
Dynamic rotation and stretch tensors from a dynamic polar decomposition
,”
J. Mech. Phys. Solids
86
,
70
93
(
2016
).
75.
M.
Farazmand
and
G.
Haller
, “
Attracting and repelling Lagrangian coherent structures from a single computation
,”
Chaos
23
,
023101
(
2013
).
76.
A.
Hadjighasem
and
G.
Haller
, “
Geodesic transport barriers in Jupiter's atmosphere: A video-based analysis
,”
SIAM Rev.
58
,
69
89
(
2016
).
77.
D.
del Castillo-Negrete
and
P. J.
Morrison
, “
Chaotic transport by Rossby waves in shear flow
,”
Phys. Fluids A
5
,
948
965
(
1993
).
78.
G.
Froyland
,
C.
Horenkamp
,
V.
Rossi
,
N.
Santitissadeekorn
, and
A. S.
Gupta
, “
Three-dimensional characterization and tracking of an Agulhas Ring
,”
Ocean Modell.
5253
,
69
75
(
2012
).
79.
G.
Froyland
,
C.
Horenkamp
,
V.
Rossi
, and
E.
van Sebille
, “
Studying an Agulhas ring's long-term pathway and decay with finite-time coherent sets
,”
Chaos
25
,
083119
(
2015
).
80.
G.
Froyland
,
R. M.
Stuart
, and
E.
van Sebille
, “
How well-connected is the surface of the global ocean?
,”
Chaos
24
,
033126
(
2014
).
81.
X. S.
Asay-Davis
,
P. S.
Marcus
,
M. H.
Wong
, and
I.
de Pater
, “
Jupiter's shrinking great red spot and steady oval BA: Velocity measurements with the advection corrected correlation image velocimetry automated cloud-tracking method
,”
Icarus
203
,
164
188
(
2009
).
82.
G.
Haller
, “
A variational theory of hyperbolic Lagrangian coherent structures
,”
Phys. D (Amsterdam, Neth.)
240
,
574
598
(
2011
).
83.
M. J.
Olascoaga
,
F. J.
Beron-Vera
,
L. E.
Brand
, and
H.
Koçak
, “
Tracing the early development of harmful algal blooms on the West Florida Shelf with the aid of Lagrangian coherent structures
,”
J. Geophys. Res.: Oceans
113
,
C12014
(
2008
).
84.
L. M.
Beal
,
W. P. M.
De Ruijter
,
A.
Biastoch
, and
R.
Zahn
, “
On the role of the Agulhas system in ocean circulation and climate
,”
Nature
472
,
429
436
(
2011
).
85.
F. J.
Beron-Vera
, “
Flow coherence: Distinguishing cause from effect
,” in
Selected Topics of Computational and Experimental Fluid Mechanics
(
Springer International Publishing
,
2015
), pp.
81
89
.
86.
M.
Deville
and
T.
Gatski
,
Mathematical Modeling for Complex Fluids and Flows
(
Springer
,
Berlin, Heidelberg
,
2012
).
You do not currently have access to this content.