We consider a network of identical pulse-coupled oscillators with delay and all-to-all coupling. We demonstrate that the discontinuous nature of the dynamics induces the appearance of isochronous regions—subsets of the phase space filled with periodic orbits having the same period. For each fixed value of the network parameters, such an isochronous region corresponds to a subset of initial states on an appropriate surface of section with non-zero dimensions such that all periodic orbits in this set have qualitatively similar dynamical behaviour. We analytically and numerically study in detail such an isochronous region, give proof of its existence, and describe its properties. We further describe other isochronous regions that appear in the system.

1.
Ashwin
,
P.
and
Borresen
,
J.
, “
Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators
,”
Phys. Rev. E
70
,
026203
(
2004
).
2.
Ashwin
,
P.
and
Borresen
,
J.
, “
Discrete computation using a perturbed heteroclinic network
,”
Phys. Lett. A
347
,
208
214
(
2005
).
3.
Ashwin
,
P.
and
Timme
,
M.
, “
Unstable attractors: Existence and robustness in networks of oscillators with delayed pulse coupling
,”
Nonlinearity
18
,
2035
2060
(
2005
).
4.
Broer
,
H. W.
,
Efstathiou
,
K.
, and
Subramanian
,
E.
, “
Heteroclinic cycles between unstable attractors
,”
Nonlinearity
21
,
1385
1410
(
2008a
).
5.
Broer
,
H. W.
,
Efstathiou
,
K.
, and
Subramanian
,
E.
, “
Robustness of unstable attractors in arbitrarily sized pulse-coupled networks with delay
,”
Nonlinearity
21
,
13
49
(
2008b
).
6.
Calogero
,
F.
, “
Isochronous dynamical systems
,”
Philos. Trans. R. Soc., A
369
,
1118
1136
(
2011
).
7.
Ernst
,
U.
,
Pawelzik
,
K.
, and
Geisel
,
T.
, “
Synchronization induced by temporal delays in pulse-coupled oscillators
,”
Phys. Rev. Lett.
74
,
1570
1573
(
1995
).
8.
Ernst
,
U.
,
Pawelzik
,
K.
, and
Geisel
,
T.
, “
Delay-induced multistable synchronization of biological oscillators
,”
Phys. Rev. E
57
,
2150
2162
(
1998
).
9.
Kielblock
,
H.
,
Kirst
,
C.
, and
Timme
,
M.
, “
Breakdown of order preservation in symmetric oscillator networks with pulse-coupling
,”
Chaos
21
,
025113
(
2011
).
10.
Klinglmayr
,
J.
and
Bettstetter
,
C.
, “
Self-organizing synchronization with inhibitory-coupled oscillators: Convergence and robustness
,”
ACM Trans. Auton. Adapt. Syst.
7
,
30
(
2012
).
11.
LaMar
,
M. D.
and
Smith
,
G. D.
, “
Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators
,”
Phys. Rev. E
81
,
046206
(
2010
).
12.
Mirollo
,
R. E.
and
Strogatz
,
S. H.
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
,
1645
1662
(
1990
).
13.
O'Keeffe
,
K. P.
,
Krapivsky
,
P. L.
, and
Strogatz
,
S. H.
, “
Synchronization as aggregation: Cluster kinetics of pulse-coupled oscillators
,”
Phys. Rev. Lett.
115
,
064101
(
2015
).
14.
Peskin
,
C. S.
,
Mathematical Aspects of Heart Physiology
, Courant Institute Lecture Notes (
Courant Institute of Mathematical Sciences
,
1975
).
15.
Schittler Neves
,
F.
and
Timme
,
M.
, “
Computation by switching in complex networks of states
,”
Phys. Rev. Lett.
109
,
018701
(
2012
).
16.
Timme
,
M.
, “
Collective dynamics in networks of pulse-coupled oscillators
,” Ph.D. thesis (
University of Göttingen
,
2002
).
17.
Timme
,
M.
and
Wolf
,
F.
, “
The simplest problem in the collective dynamics of neural networks: is synchrony stable?
Nonlinearity
21
,
1579
(
2008
).
18.
Timme
,
M.
,
Wolf
,
F.
, and
Geisel
,
T.
, “
Unstable attractors induce perpetual synchronization and desynchronization
,”
Chaos
13
,
377
(
2003
).
19.
Wu
,
W.
and
Chen
,
T.
, “
Desynchronization of pulse-coupled oscillators with delayed excitatory coupling
,”
Nonlinearity
20
,
789
808
(
2007
).
20.
Wu
,
W.
and
Chen
,
T.
, “
Impossibility of asymptotic synchronization for pulse-coupled oscillators with delayed excitatory coupling
,”
Int. J. Neural Syst.
19
,
425
435
(
2009
).
21.
Wu
,
W.
,
Liu
,
B.
, and
Chen
,
T.
, “
Analysis of firing behaviors in networks of pulse-coupled oscillators with delayed excitatory coupling
,”
Neural Networks
23
,
783
788
(
2010
).
22.
Zeitler
,
M.
,
Daffertshofer
,
A.
, and
Gielen
,
C.
, “
Asymmetry in pulse-coupled oscillators with delay
,”
Phys. Rev. E
79
,
065203
(
2009
).
23.
Zumdieck
,
A.
,
Timme
,
M.
,
Geisel
,
T.
, and
Wolf
,
F.
, “
Long chaotic transients in complex networks
,”
Phys. Rev. Lett.
93
,
244103
(
2004
).
You do not currently have access to this content.