We investigate the influence of noise on deterministically stable holes in the cubic-quintic complex Ginzburg-Landau equation. Inspired by experimental possibilities, we specifically study two types of noise: additive noise delta-correlated in space and spatially homogeneous multiplicative noise on the formation of π-holes and 2π-holes. Our results include the following main features. For large enough additive noise, we always find a transition to the noisy version of the spatially homogeneous finite amplitude solution, while for sufficiently large multiplicative noise, a collapse occurs to the zero amplitude solution. The latter type of behavior, while unexpected deterministically, can be traced back to a characteristic feature of multiplicative noise; the zero solution acts as the analogue of an absorbing boundary: once trapped at zero, the system cannot escape. For 2π-holes, which exist deterministically over a fairly small range of values of subcriticality, one can induce a transition to a π-hole (for additive noise) or to a noise-sustained pulse (for multiplicative noise). This observation opens the possibility of noise-induced switching back and forth from and to 2π-holes.

1.
G. P.
Agrawal
,
Nonlinear Fiber Optics
(
Academic Press
,
2001
).
2.
B.
Frisquet
,
B.
Kibler
,
F.
Baronio
,
M.
Conforti
,
G.
Millot
, and
S.
Wabnitz
,
Sci. Rep.
6
,
20785
(
2016
).
3.
F.
Daviaud
,
J.
Lega
,
P.
Bergé
,
P.
Coullet
, and
M.
Dubois
,
Physica D
55
,
287
(
1992
).
4.
J.
Lega
,
B.
Janiaud
,
S.
Jucquois
, and
V.
Croquette
,
Phys. Rev. A
45
,
5596
(
1992
).
5.
J.
Burguete
,
H.
Chaté
,
F.
Daviaud
, and
N.
Mukolobwiez
,
Phys. Rev. Lett.
82
,
3252
(
1999
).
6.
F. S.
Merkt
,
R. D.
Deegan
,
D. I.
Goldman
,
E. C.
Rericha
, and
H. L.
Swinney
,
Phys. Rev. Lett.
92
,
184501
(
2004
).
7.
H.
Ebata
and
M.
Sano
,
Phys. Rev. Lett.
107
,
088301
(
2011
).
8.
H.
Ebata
and
M.
Sano
,
Phys. Rev. E
88
,
053007
(
2013
).
9.
N.
Bekki
and
K.
Nozaki
,
Phys. Lett. A
110
,
133
(
1985
).
10.
I.
Aranson
and
L.
Kramer
,
Rev. Mod. Phys.
74
,
99
(
2002
).
11.
S.
Popp
,
O.
Stiller
,
I.
Aranson
,
A.
Weber
, and
L.
Kramer
,
Phys. Rev. Lett.
70
,
3880
(
1993
).
12.
S.
Popp
,
O.
Stiller
,
I. S.
Aranson
, and
L.
Kramer
,
Physica D
84
,
398
(
1995
).
13.
H.
Sakaguchi
,
Prog. Theor. Phys.
85
,
417
(
1991
).
14.
N.
Efremidis
,
K.
Hizanidis
,
H. E.
Nistazakis
,
D. J.
Frantzeskakis
, and
B. A.
Malomed
,
Phys. Rev. E
62
,
7410
(
2000
).
15.
H.
Sakaguchi
,
Prog. Theor. Phys.
86
,
7
(
1991
).
16.
H. R.
Brand
,
P. S.
Lomdahl
, and
A. C.
Newell
,
Phys. Lett. A
118
,
67
(
1986
);
H. R.
Brand
,
P. S.
Lomdahl
, and
A. C.
Newell
,
Physica D
23
,
345
(
1986
).
17.
O.
Thual
and
S.
Fauve
,
J. Phys. France.
49
,
1829
(
1988
).
18.
H. R.
Brand
and
R. J.
Deissler
,
Phys. Rev. Lett.
63
,
2801
(
1989
).
19.
W.
van Saarloos
and
P. C.
Hohenberg
,
Phys. Rev. Lett.
64
,
749
(
1990
).
20.
B. A.
Malomed
and
A. A.
Nepomnyashchy
,
Phys. Rev. A
42
,
6009
(
1990
).
21.
R. J.
Deissler
and
H. R.
Brand
,
Phys. Rev. Lett.
72
,
478
(
1994
).
22.
R. J.
Deissler
and
H. R.
Brand
,
Phys. Rev. Lett.
74
,
4847
(
1995
).
23.
N.
Akhmediev
and
V. V.
Afanasjev
,
Phys. Rev. Lett.
75
,
2320
(
1995
).
24.
N. N.
Akhmediev
,
V. V.
Afanasjev
, and
J. M.
Soto-Crespo
,
Phys. Rev. E
53
,
1190
(
1996
).
25.
V. V.
Afanasjev
,
N. N.
Akhmediev
, and
J. M.
Soto-Crespo
,
Phys. Rev. E
53
,
1931
(
1996
).
26.
R. J.
Deissler
and
H. R.
Brand
,
Phys. Rev. Lett.
81
,
3856
(
1998
).
27.
J. M.
Soto-Crespo
,
N.
Akhmediev
, and
A.
Ankiewicz
,
Phys. Rev. Lett.
85
,
2937
(
2000
).
28.
N.
Akhmediev
,
J. M.
Soto-Crespo
, and
G.
Town
,
Phys. Rev. E
63
,
056602
(
2001
).
29.
S. T.
Cundiff
,
J. M.
Soto-Crespo
, and
N.
Akhmediev
,
Phys. Rev. Lett.
88
,
073903
(
2002
).
30.
O.
Descalzi
and
H. R.
Brand
,
Phys. Rev. E
82
,
026203
(
2010
).
31.
O.
Descalzi
and
H. R.
Brand
,
Phys. Rev. E
90
,
020901(R)
(
2014
).
32.
Y.
Hayase
,
O.
Descalzi
, and
H. R.
Brand
,
Phys. Rev. E
69
,
065201(R)
(
2004
).
33.
O.
Descalzi
and
H. R.
Brand
,
Phys. Rev. E
72
,
055202(R)
(
2005
).
34.
O.
Descalzi
,
H. R.
Brand
, and
J.
Cisternas
,
Physica A
371
,
41
(
2006
).
35.
O.
Descalzi
,
J.
Cisternas
, and
H. R.
Brand
,
Phys. Rev. E
74
,
065201(R)
(
2006
).
36.
O.
Descalzi
,
J.
Cisternas
,
P.
Gutiérrez
, and
H. R.
Brand
,
Eur. Phys. J. Spec. Top.
146
,
63
(
2007
).
37.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North Holland
,
Amsterdam
,
1983
).
38.
H.
Risken
,
The Fokker-Planck Equation
(
Springer
,
Berlin
,
1989
).
39.
L. S.
Tsimring
,
Rep. Prog. Phys.
77
,
026601
(
2014
).
40.
41.
A.
Schenzle
and
H.
Brand
,
Phys. Rev. A
20
,
1628
(
1979
).
42.
I.
Rehberg
,
S.
Rasenat
,
M.
de la Torre Juárez
,
W.
Schöpf
,
F.
Hörner
,
G.
Ahlers
, and
H. R.
Brand
,
Phys. Rev. Lett.
67
,
596
(
1991
).
43.
H. R.
Brand
,
S.
Kai
, and
S.
Wakabayashi
,
Phys. Rev. Lett.
54
,
555
(
1985
).
44.
S.
Kai
,
H.
Fukunaga
, and
H. R.
Brand
,
J. Phys. Soc. Jpn.
56
,
3759
(
1987
).
45.
Y.
Hayase
,
S.
Wehner
,
J.
Küppers
, and
H. R.
Brand
,
Phys. Rev. E
69
,
021609
(
2004
).
46.
S.
Wehner
,
S.
Karpitschka
,
Y.
Burkov
,
D.
Schmeisser
,
J.
Küppers
, and
H. R.
Brand
,
Physica D
239
,
746
(
2010
).
47.
C.
Cartes
,
O.
Descalzi
, and
H. R.
Brand
,
Phys. Rev. E
85
,
015205
(
2012
).
48.
O.
Descalzi
,
J.
Cisternas
,
D.
Escaff
, and
H. R.
Brand
,
Phys. Rev. Lett.
102
,
188302
(
2009
).
49.
O.
Descalzi
,
C.
Cartes
, and
H. R.
Brand
,
Phys. Rev. E
94
,
012219
(
2016
).
You do not currently have access to this content.