Early detection of bifurcations and chaos and understanding their topological characteristics are essential for safe and reliable operation of various electrical, chemical, physical, and industrial processes. However, the presence of non-linearity and high-dimensionality in system behavior makes this analysis a challenging task. The existing methods for dynamical system analysis provide useful tools for anomaly detection (e.g., Bendixson-Dulac and Poincare-Bendixson criteria can detect the presence of limit cycles); however, they do not provide a detailed topological understanding about system evolution during bifurcations and chaos, such as the changes in the number of subcycles and their positions, lifetimes, and sizes. This paper addresses this research gap by using topological data analysis as a tool to study system evolution and develop a mathematical framework for detecting the topological changes in the underlying system using persistent homology. Using the proposed technique, topological features (e.g., number of relevant k-dimensional holes, etc.) are extracted from nonlinear time series data which are useful for deeper analysis of the system behavior and early detection of bifurcations and chaos. When applied to a Logistic map, a Duffing oscillator, and a real life Op-amp based Jerk circuit, these features are shown to accurately characterize the system dynamics and detect the onset of chaos.

1.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
2.
V.
De Silva
and
G. E.
Carlsson
, “
Topological estimation using witness complexes
,” in
Eurographics Symposium on Point-Based Graphics
(
SPBG)
(
2004
), Vol. 4, pp.
157
166
.
3.
D. L.
Donoho
, “
De-noising by soft-thresholding
,”
IEEE Trans. Inf. Theory
41
,
613
627
(
1995
).
4.
D. L.
Donoho
and
J. M.
Johnstone
, “
Ideal spatial adaptation by wavelet shrinkage
,”
Biometrika
81
,
425
455
(
1994
).
5.
H.
Edelsbrunner
,
D.
Letscher
, and
A.
Zomorodian
, “
Topological persistence and simplification
,”
Discrete Comput. Geom.
28
,
511
533
(
2002
).
6.
J.
Garland
,
E.
Bradley
, and
J. D.
Meiss
, “
Exploring the topology of dynamical reconstructions
,”
Phys. D
334
,
49
59
(
2016
).
7.
R.
Ghrist
, “
Barcodes: The persistent topology of data
,”
Bull. Am. Math. Soc.
45
,
61
75
(
2008
).
8.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,” in
The Theory of Chaotic Attractors
(
Springer
,
2004
), pp.
170
189
.
9.
S.
Gupta
and
A.
Ray
, “
Pattern identification using lattice spin systems: A thermodynamic formalism
,”
Appl. Phys. Lett.
91
,
194105
(
2007
).
10.
S.
Gupta
and
A.
Ray
, “
Statistical mechanics of complex systems for pattern identification
,”
J. Stat. Phys.
134
,
337
364
(
2009
).
11.
A.
Hatcher
,
Algebraic Topology
(
Cambridge University Press
,
2002
).
12.
D. K.
Jha
,
D. S.
Singh
,
S.
Gupta
, and
A.
Ray
, “
Fractal analysis of crack initiation in polycrystalline alloys using surface interferometry
,”
EPL (Europhys. Lett.)
98
,
44006
(
2012
).
13.
D.
Jordan
and
P.
Smith
,
Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers
(
Oxford University Press on Demand
,
2007
).
14.
H. K.
Khalil
and
J.
Grizzle
,
Nonlinear Systems
(
Prentice Hall
,
New Jersey
,
1996
), Vol. 3.
15.
S.
Maletić
,
Y.
Zhao
, and
M.
Rajković
, “
Persistent topological features of dynamical systems
,”
Chaos
26
,
053105
(
2016
).
16.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
17.
A. I.
Mees
,
Dynamics of Feedback Systems
(
John Wiley & Sons, Inc.
,
1981
).
18.
J. R.
Munkres
,
Elements of Algebraic Topology
(
Addison-Wesley Menlo Park
,
1984
), Vol. 2.
19.
C. M.
Pereira
and
R. F.
de Mello
, “
Persistent homology for time series and spatial data clustering
,”
Expert Syst. Appl.
42
,
6026
6038
(
2015
).
20.
T. D.
Sauer
,
J. A.
Tempkin
, and
J. A.
Yorke
, “
Spurious lyapunov exponents in attractor reconstruction
,”
Phys. Rev. Lett.
81
,
4341
(
1998
).
21.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence, Warwick 1980
(
Springer
,
1981
), pp.
366
381
.
22.
A.
Tausz
,
M.
Vejdemo-Johansson
, and
H.
Adams
, “
JavaPlex: A research software package for persistent (co)homology
,” in
Proceedings of ICMS 2014, Lecture Notes in Computer Science 8592
, edited by H. Hong and C. Yap (
2014
), pp.
129
136
, see http://appliedtopology.github.io/javaplex/.
23.
R.
Tchitnga
,
T.
Nguazon
,
P. H. L.
Fotso
, and
J. A.
Gallas
, “
Chaos in a single op-amp–based jerk circuit: Experiments and simulations
,”
IEEE Trans. Circuits Syst.
63
,
239
243
(
2016
).
24.
A.
Zomorodian
and
G.
Carlsson
, “
Computing persistent homology
,”
Discrete Comput. Geom.
33
,
249
274
(
2005
).
You do not currently have access to this content.