Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.

1.
D.
Baker
and
A.
Sali
, “
Protein structure prediction and structural genomics
,”
Science
294
,
93
96
(
2001
).
2.
D.
Lee
,
O.
Redfern
, and
C.
Orengo
, “
Predicting protein function from sequence and structure
,”
Nat. Rev. Mol. Cell Biol.
8
,
995
1005
(
2007
).
3.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C. S.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
4.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
5.
S.
Pei
and
H. A.
Makse
, “
Spreading dynamics in complex networks
,”
J. Stat. Mech.
12
,
P12002
(
2013
).
6.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
7.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
2112
(
1998
).
8.
L.
Huang
,
Q.
Chen
,
Y.-C.
Lai
, and
L.
Pecora
, “
Generic behaviour of master-stability functions in coupled nonlinear dynamical systems
,”
Phys. Rev. E
80
,
036204
(
2009
).
9.
G.
Schmidt
,
G.
Zamora-López
,
C.
Zhou
, and
J.
Kurths
, “
Simulation of large scale cortical networks by individual neuron dynamics
,”
Int. J. Bifurcation Chaos
20
,
859
867
(
2010
).
10.
A.
Messé
,
D.
Rudrauf
,
H.
Benali
, and
G.
Marrelec
, “
Relating structure and function in the human brain: Relative contributions of anatomy, stationary dynamics, and non-stationarities
,”
PLoS Comput. Biol.
10
,
e1003530
(
2014
).
11.
J. S.
Damoiseaux
and
M. D.
Greicius
, “
Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity
,”
Brain Struct. Funct.
213
,
525
533
(
2009
).
12.
D. J.
Sharp
,
C. F.
Beckmann
,
R.
Greenwood
,
K. M.
Kinnunen
,
V.
Bonnelle
,
X.
De Boissezon
,
J. H.
Powell
,
S. J.
Counsell
,
M. C.
Patel
, and
R.
Leech
, “
Default mode network functional and structural connectivity after traumatic brain injury
,”
Brain
134
,
2233
2247
(
2011
).
13.
X.
Shen
,
E. S.
Finn
,
D.
Scheinost
,
M. D.
Rosenberg
,
M. M.
Chun
,
X.
Papademetris
, and
R. T.
Constable
, “
Using connectome-based predictive modeling to predict individual behavior from brain connectivity
,”
Nat. Protocols
12
,
506
518
(
2017
).
14.
B.
Biswal
,
F.
Zerrin Yetkin
,
V. M.
Haughton
, and
J. S.
Hyde
, “
Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
,”
Magn. Reson. Med.
34
,
537
541
(
1995
).
15.
D. A.
Gusnard
and
M. E.
Raichle
, “
Searching for a baseline: Functional imaging and the resting human brain
,”
Nat. Rev. Neurosci.
2
,
685
694
(
2001
).
16.
M. D.
Fox
,
A. Z.
Snyder
,
J. L.
Vincent
,
M.
Corbetta
,
D. C. V.
Essen
, and
M. E.
Raichle
, “
The human brain is intrinsically organized into dynamic, anticorrelated functional networks
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
9673
9678
(
2005
).
17.
C. F.
Beckmann
,
M.
DeLuca
,
J. T.
Devlin
, and
S. M.
Smith
, “
Investigations into resting-state connectivity using independent component analysis
,”
Philos. Trans. R. Soc. B
360
,
1001
1013
(
2005
).
18.
B. B.
Biswal
,
M.
Mennes
,
X.-N.
Zuo
,
S.
Gohel
,
C.
Kelly
,
S. M.
Smith
,
C. F.
Beckmann
,
J. S.
Adelstein
,
R. L.
Buckner
,
S.
Colcombe
,
A.-M.
Dogonowski
,
M.
Ernst
,
D.
Fair
,
M.
Hampson
,
M. J.
Hoptman
,
J. S.
Hyde
,
V. J.
Kiviniemi
,
R.
Kötter
,
S.-J.
Li
,
C.-P.
Lin
,
M. J.
Lowe
,
C.
Mackay
,
D. J.
Madden
,
K. H.
Madsen
,
D. S.
Margulies
,
H. S.
Mayberg
,
K.
McMahon
,
C. S.
Monk
,
S. H.
Mostofsky
,
B. J.
Nagel
,
J. J.
Pekar
,
S. J.
Peltier
,
S. E.
Petersen
,
V.
Riedl
,
S. A. R. B.
Rombouts
,
B.
Rypma
,
B. L.
Schlaggar
,
S.
Schmidt
,
R. D.
Seidler
,
G. J.
Siegle
,
C.
Sorg
,
G.-J.
Teng
,
J.
Veijola
,
A.
Villringer
,
M.
Walter
,
L.
Wang
,
X.-C.
Weng
,
S.
Whitfield-Gabrieli
,
P.
Williamson
,
C.
Windischberger
,
Y.-F.
Zang
,
H.-Y.
Zhang
,
F. X.
Castellanos
, and
M. P.
Milham
, “
Toward discovery science of human brain function
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
4734
4739
(
2010
).
19.
C. S.
Zhou
,
L.
Zemanová
,
G.
Zamora-López
,
C.-C.
Hilgetag
, and
J.
Kurths
, “
Hierarchical organization unveiled by functional connectivity in complex brain networks
,”
Phys. Rev. Lett.
97
,
238103
(
2006
).
20.
C. J.
Honey
,
R.
Kotter
,
M.
Breakspear
, and
O.
Sporns
, “
Network structure of cerebral cortex shapes functional connectivity on multiple time scales
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
10240
10245
(
2007
).
21.
J.
Gómez-Gardeñes
,
G.
Zamora-López
,
Y.
Moreno
, and
A.
Arenas
, “
From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex
,”
PLoS One
5
,
e12313
(
2010
).
22.
G.
Deco
,
V.
Jirsa
,
A. R.
McIntosh
,
O.
Sporns
, and
R.
Kotter
, “
Key role of coupling, delay, and noise in resting brain fluctuations
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
10302
10307
(
2009
).
23.
G.
Deco
,
V. K.
Jirsa
, and
A. R.
McIntosh
, “
Emerging concepts for the dynamical organization of resting-state activity in the brain
,”
Nat. Rev. Neurosci.
12
,
43
56
(
2011
).
24.
F.
Abdelnour
,
H. U.
Voss
, and
A.
Raj
, “
Network diffusion accurately models the relationship between structural and functional brain connectivity networks
,”
NeuroImage
90
,
335
347
(
2014
).
25.
A.
Messé
,
H.
Benali
, and
G.
Marrelec
, “
Relating structural and functional connectivity in MRI: A simple model for a complex brain
,”
IEEE Trans. Med. Imaging
34
,
27
37
(
2015
).
26.
M. L.
Saggio
,
P.
Ritter
, and
V. K.
Jirsa
, “
Analytical operations relate structural and functional connectivity in the brain
,”
PloS One
11
,
e0157292
(
2016
).
27.
A.
Messé
,
D.
Rudrauf
,
A.
Giron
, and
G.
Marrelec
, “
Predicting functional connectivity from structural connectivity via computational models using MRI: An extensive comparison study
,”
NeuroImage
111
,
65
75
(
2015
).
28.
G.
Deco
,
P.
Hagmann
,
A.
Hudetz
, and
G.
Tononi
, “
Modeling resting-state functional networks when the cortex falls asleep: Local and global changes
,”
Cereb. Cortex
24
,
3180
3194
(
2014
).
29.
A.
Hudetz
,
X.
Liu
, and
S.
Pillay
, “
Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness
,”
Brain Connect.
5
,
1
13
(
2014
).
30.
R. G.
Bettinardi
,
N.
Tort-Colet
,
M.
Ruiz-Mejias
,
M. V.
Sanchez-Vives
, and
G.
Deco
, “
Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials
,”
NeuroImage
114
,
185
198
(
2015
).
31.
V.
Latora
and
M.
Marchiori
, “
Efficient behavior of small-world networks
,”
Phys. Rev. Lett.
87
,
198701
(
2001
).
32.
B. A.
Huberman
and
L. A.
Adamic
, “
Information dynamics in the networked world
,”
in Complex Networks
, Lecture Notes in Physics Vol. 650, edited by
E.
Ben-Naim
,
H.
Frauenfelder
, and
Z.
Toroczkai
(
Springer
,
Berlin, Heidelberg
,
2004
), pp.
371
398
.
33.
D. J.
Ashton
,
T. C.
Jarrett
, and
N. F.
Johnson
, “
Effect of congestion costs on shortest paths through complex networks
,”
Phys. Rev. Lett.
94
,
058701
(
2005
).
34.
A.
Trusina
,
M.
Rosvall
, and
K.
Sneppen
, “
Communication boundaries in networks
,”
Phys. Rev. Lett.
94
,
238701
(
2005
).
35.
S. P.
Borgatti
, “
Centrality and network flow
,”
Soc. Networks
27
,
55
71
(
2005
).
36.
V.
Colizza
,
A.
Flammini
,
M. A.
Serrano
, and
A.
Vespignani
, “
Detecting rich-club ordering in complex networks
,”
Nat. Phys.
2
,
110
115
(
2006
).
37.
G.
Zamora-López
,
C. S.
Zhou
, and
J.
Kurths
, “
Graph analysis of cortical networks reveals complex anatomical communication substrate
,”
Chaos
19
,
015117
(
2009
).
38.
J.
Goñi
,
M. P. v. d.
Heuvel
,
A.
Avena-Koenigsberger
,
N. V. d.
Mendizabal
,
R. F.
Betzel
,
A.
Griffa
,
P.
Hagmann
,
B.
Corominas-Murtra
,
J.-P.
Thiran
, and
O.
Sporns
, “
Resting-brain functional connectivity predicted by analytic measures of network communication
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
833
838
(
2014
).
39.
A.
Avena-Koenigsberger
,
B.
Mišić
,
R.
Hawkins
,
A.
Griffa
,
P.
Hagmann
,
J.
Goñi
, and
O.
Sporns
, “
Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome
,”
Brain Struct. Funct.
222
(1),
603
618
(
2016
).
40.
J.
Bang-Jensen
and
G. Z.
Gutin
,
Digraphs: Theory, Algorithms and Applications
(
Springer
,
2008
).
41.
E.
Estrada
and
N.
Hatano
, “
Communicability in complex networks
,”
Phys. Rev. E
77
,
036111
(
2008
).
42.
E.
Estrada
,
N.
Hatano
, and
M.
Benzi
, “
The physics of communicability in complex networks
,”
Phys. Rep.
514
,
89
119
(
2012
).
43.
G.
Zamora-López
,
Y.
Chen
,
G.
Deco
,
M. L.
Kringelbach
, and
C.
Zhou
, “
Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs
,”
Sci. Rep.
6
,
38424
(
2016
).
44.
D. K.
Jones
and
M.
Cercignani
, “
Twenty-five pitfalls in the analysis of diffusion MRI data
,”
NMR Biomed.
23
,
803
820
(
2010
).
45.
C.
Thomas
,
Q. Y.
Frank
,
M. O.
Irfanoglu
,
P.
Modi
,
K. S.
Saleem
,
D. A.
Leopold
, and
C.
Pierpaoli
, “
Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
16574
16579
(
2014
).
46.
S.
Jbabdi
,
S. N.
Sotiropoulos
,
S. N.
Haber
,
D. C.
Van Essen
, and
T. E.
Behrens
, “
Measuring macroscopic brain connections in vivo
,”
Nat. Neurosci.
18
,
1546
1555
(
2015
).
47.
F.
Freyer
,
J. A.
Roberts
,
R.
Becker
,
P. A.
Robinson
,
P.
Ritter
, and
M.
Breakspear
, “
Biophysical mechanisms of multistability in resting-state cortical rhythms
,”
J. Neurosci.
31
,
6353
6361
(
2011
).
48.
F.
Freyer
,
J. A.
Roberts
,
P.
Ritter
, and
M.
Breakspear
, “
A canonical model of multistability and scale-invariance in biological systems
,”
PLoS Comput Biol.
8
,
e1002634
(
2012
).
49.
G.
Deco
and
M. L.
Kringelbach
, “
Metastability and coherence: Extending the communication through coherence hypothesis using a whole-brain computational perspective
,”
Trends Neurosci.
39
,
125
135
(
2016
).
50.
Y.
Moreno
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Epidemic outbreaks in complex heterogeneous networks
,”
Eur. Phys. J. B
26
,
521
529
(
2002
).
51.
C.
Zhou
and
J.
Kurths
, “
Hierarchical synchronization in networks of oscillators with heterogeneous degrees
,”
Chaos
16
,
015104
(
2006
).
52.
X.
Wu
,
B.
Wang
,
T.
Zhou
,
W.
Wang
,
M.
Zhao
, and
H.
Yang
, “
Synchronizability of highly clustered scale-free networks
,”
Chin. Phys. Lett.
23
(
4
),
1046
1049
(
2006
).
53.
M.
di Bernardo
,
F.
Garofalo
, and
F.
Sorrentino
, “
Effects of degree correlation on the synchronizability of networks of nonlinear oscillators
,” in
Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference WeA14.1
(
2005
).
54.
M.
Nekovee
,
Y.
Moreno
,
G.
Bianconi
, and
M.
Marsili
, “
Theory of rumour spreading in complex social networks
,”
Physica A
374
,
457
470
(
2007
).
55.
M.
Chavez
,
D.-U.
Hwang
,
A.
Amann
, and
S.
Boccaletti
, “
Synchronizing weighted complex networks
,”
Chaos
16
,
015106
(
2006
).
56.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljiero
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
893
(
2010
).
57.
A.
Arenas
,
A.
Díaz-Guilera
, and
C.
Pérez-Vicente
, “
Synchronization reveals topological scales in complex networks
,”
Phys. Rev. Lett.
96
,
114102
(
2006
).
58.
R. A.
Baños
,
J.
Borge-Holthoefer
, and
Y.
Moreno
, “
The role of hidden influentials in the diffusion of online information cascades
,”
Eur. Phys. J. B
2
,
6
(
2013
).
59.
J.
Meier
,
P.
Tewarie
,
L.
Douw
,
B. W.
van Dijk
,
S. M.
Stufflebeam
, and
P.
van Mieghem
, “
A mapping between structural and functional brain networks
,”
Brain Connect.
6
,
298
311
(
2016
).
60.
H.
Liang
and
H.
Wang
, “
Structure-function network mapping and its assessment via persistent homology
,”
PLoS Comput. Biol.
13
,
e1005325
(
2017
).
61.
J. L.
Anderson
,
S.
Skare
, and
J.
Ashburner
, “
How to correct susceptibility distortions in spin echo-planar images: Application to diffusion tensor imaging
,”
NeuroImage
20
,
870
888
(
2003
).
62.
J.
Anderson
and
S.
Sotiropoulos
, “
An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
,”
NeuroImage
125
,
1063
1078
(
2016
).
63.
A.
Leemans
and
D.
Jones
, “
The B-matrix must be rotated when correcting for subject motion in DTI data
,”
Magn. Reson. Med.
61
,
1336
(
2009
).
64.
A.
Ersiz
,
V. E.
Arpinar
,
S.
Dreyer
, and
L. T.
Muftuler
, “
Quantitative analysis of the efficacy of gradient table correction on improving the accuracy of fiber tractography
,”
Magn. Reson. Med.
72
,
227
236
(
2014
).
65.
T. E.
Behrens
,
H. J.
Berg
,
S.
Jbabdi
,
M. F. S.
Rushworth
, and
M. W.
Woolrich
, “
Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
NeuroImage
34
(1),
144
155
(
2003
).
66.
N.
Tzourio-Mazoyer
,
B.
Landeau
,
D.
Papathanassiou
,
F.
Crivello
,
O.
Etard
,
N.
Delcroix
,
B.
Mazoyer
, and
M.
Joliot
, “
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
,”
Neuroimage
15
,
273
(
2002
).
67.
S. M.
Smith
,
N.
De Stefano
,
M.
Jenkinson
, and
P. M.
Matthews
, “
Normalized accurate measurement of longitudinal brain change
,”
J. Comput. Assist. Tomogr.
25
,
466
475
(
2001
).
68.
C.
Thomas
and
C. I.
Baker
, “
Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans
,”
NeuroImage
73
,
225
236
(
2013
).
69.
T.
Behrens
,
H.
Berg
,
S.
Jbabdi
,
M.
Rushworth
, and
M.
Woolrich
, “
Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
,”
Neuroimage
34
,
144
(
2007
).
70.
M. A.
de Reus
and
M.
van den Heuvel
, “
Estimating false positives and negatives in brain networks
,”
NeuroImage
70
,
402
409
(
2013
).
71.
A. X.
Patel
,
P.
Kundu
,
M.
Rubinov
,
P. S.
Jones
,
P. E.
Vérts
,
K. D.
Ersche
,
J.
Suckling
, and
E. T.
Bullmore
, “
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
,”
NeuroImage
95
,
287
304
(
2014
).
72.
E.
Glerean
,
J.
Salmi
,
J. M.
Lahnakoski
,
I. P.
Jääskeläinen
, and
M.
Sams
, “
Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity
,”
Brain Connect.
2
,
91
101
(
2012
).

Supplementary Material

You do not currently have access to this content.