The 1/f-like decay observed in the power spectrum of electro-physiological signals, along with scale-free statistics of the so-called neuronal avalanches, constitutes evidence of criticality in neuronal systems. Recent in vitro studies have shown that avalanche dynamics at criticality corresponds to some specific balance of excitation and inhibition, thus suggesting that this is a basic feature of the critical state of neuronal networks. In particular, a lack of inhibition significantly alters the temporal structure of the spontaneous avalanche activity and leads to an anomalous abundance of large avalanches. Here, we study the relationship between network inhibition and the scaling exponent β of the power spectral density (PSD) of avalanche activity in a neuronal network model inspired in Self-Organized Criticality. We find that this scaling exponent depends on the percentage of inhibitory synapses and tends to the value β = 1 for a percentage of about 30%. More specifically, β is close to 2, namely, Brownian noise, for purely excitatory networks and decreases towards values in the interval [1, 1.4] as the percentage of inhibitory synapses ranges between 20% and 30%, in agreement with experimental findings. These results indicate that the level of inhibition affects the frequency spectrum of resting brain activity and suggest the analysis of the PSD scaling behavior as a possible tool to study pathological conditions.

1.
E.
Novikov
,
A.
Novikov
,
D.
Shannahoff-Khalsa
,
B.
Schwartz
, and
J.
Wright
, “
Scale-similar activity in the brain
,”
Phys. Rev. E
56
,
R2387
(
1997
).
2.
C.
Bedard
,
H.
Kröger
, and
A.
Destexhe
, “
Does the 1/f frequency scaling of brain signals reflect self-organized critical states?
,”
Phys. Rev. Lett.
97
,
118102
(
2006
).
3.
N.
Dehghani
,
C.
Bedard
,
S. S.
Cash
,
E.
Halgren
, and
A.
Destexhe
, “
Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans
,”
J. Comput. Neurosci.
29
,
405
421
(
2010
).
4.
W.
Pritchard
, “
The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram
,”
Int. J. Neurosci.
66
,
119
129
(
1992
).
5.
E.
Zarahn
,
G. K.
Aguirre
, and
M. D.
Esposito
, “
Empirical analysis of bold fmri statistics. i. spatially unsmoothed data collected under null-hypothesis conditions
,”
NeuroImage
5
,
179
(
1997
).
6.
M.
Yamamoto
and
R.
Hughson
, “
Extracting fractal components from time series
,”
Physica D
68
,
250
264
(
1993
).
7.
M.
Hämäläinen
,
R.
Hari
,
R.
IImoniemi
,
J.
Knuutila
, and
O.
Lounasmaa
, “
Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
,”
Rev. Mod. Phys.
65
,
413
(
1993
).
8.
K.
Linkenkaer-Hansen
,
V. V.
Nikouline
,
J. M.
Palva
, and
R. J.
IImoniemi
, “
Long-range temporal correlations and scaling behavior in human brain oscillations
,”
J. Neurosci.
21
,
1370
1377
(
2001
).
9.
B. J.
He
,
J. M.
Zempel
,
A. Z.
Snyder
, and
M. E.
Raichle
, “
The temporal structures and functional significance of scale-free brain activity
,”
Neuron
66
,
353
369
(
2010
).
10.
C.
Tang
,
P.
Bak
, and
K.
Wiesenfeld
, “
Self-organized criticality
,”
Phys. Rev. A
38
,
364
(
1988
).
11.
J. M.
Beggs
and
D.
Plenz
, “
Neuronal avalanches in neocortical circuits
,”
J. Neurosci.
23
,
11167
11177
(
2003
).
12.
O.
Shriki
,
J.
Alstott
,
F.
Carver
,
T.
Holroyd
,
R. N. A.
Hanson
,
M. L.
Smith
,
R.
Coppola
,
E.
Bullmore
, and
D.
Plenz
, “
Neuronal avalanches in the resting meg of the human brain
,”
J. Neurosci.
33
,
7079
7090
(
2013
).
13.
G.
Pruessner
,
Self-Organised Criticality: Theory, Models and Characterisation
(
Cambridge University Press
,
2012
).
14.
L.
de Arcangelis
,
C.
Perrone-Capano
, and
H. J.
Herrmann
, “
Self-organized criticality model for brain plasticity
,”
Phys. Rev. Lett.
96
,
028107
(
2006
).
15.
F.
Lombardi
,
H. J.
Herrmann
,
C.
Perrone-Capano
,
D.
Plenz
, and
L.
de Arcangelis
, “
Balance between excitation and inhibition controls the temporal organization of neuronal avalanches
,”
Phys. Rev. Lett.
108
,
228703
(
2012
).
16.
F.
Lombardi
,
H. J.
Herrmann
,
D.
Plenz
, and
L.
de Arcangelis
, “
On the temporal organization of neuronal avalanches
,”
Front. Syst. Neurosci.
8
,
204
(
2014
).
17.
V. M.
Eguiluz
,
D. R.
Chialvo
,
G. A.
Cecchi
,
M.
Baliki
, and
A. V.
Apkarian
, “
Scale-free brain functional networks
,”
Phys. Rev. Lett.
94
,
018102
(
2005
).
18.
B.
Roerig
and
B.
Chen
, “
Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex
,”
Cereb. Cortex
12
,
187
198
(
2002
).
19.
P.
Bonifazi
,
M.
Goldin
,
M. A.
Picardo
,
I.
Jorquera
,
A.
Cattani
,
G.
Bianconi
,
A.
Represa
,
Y.
Ben-Ari
, and
R.
Cossart
, “
Gabaergic hub neurons orchestrate synchrony in developing hippocampal networks
,”
Science
326
,
1419
(
2009
).
20.

Given two neurons, i and j, and a synaptic connection directed from i to j, i is called presynaptic and j postsynaptic neuron.

21.
P.
De Los Rios
and
Y.-C.
Zhang
, “
Universal 1/f noise from dissipative self-organized criticality model
,”
Phys. Rev. Lett.
82
,
472
(
1999
).
22.
S.-S.
Poil
,
A.
van Ooyen
, and
K.
Linkenkaer-Hansen
, “
Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations
,”
Hum. Brain Mapp.
29
,
770
777
(
2008
).
23.
H. J.
Jensen
,
Self-Organized Criticality
(
Cambridge University Press
,
1998
).
24.
M.
Kuntz
and
J.
Sethna
, “
Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models
,”
Phys. Rev. B
62
,
11699
(
2000
).
25.
J.
Davidsen
and
M.
Paczuski
, “
1/fα noise from correlations between avalanches in self-organized criticality
,”
Phys. Rev. E
66
,
050101
(
2002
).
26.
M.
Baiesi
and
C.
Maes
, “
Realistic time correlations in sandpiles
,”
Europhys. Lett.
75
,
413
(
2006
).
27.
W.
Shew
,
H.
Yang
,
T.
Petermann
,
R.
Roy
, and
D.
Plenz
, “
Neuronal avalanches imply maximum dynamic range in cortical networks at criticality
,”
J. Neurosci.
29
,
15595
15600
(
2009
).
28.
O.
Kinouchi
and
M.
Copelli
, “
Optimal dynamical range of excitable networks at criticality
,”
Nat. Phys.
2
,
348
(
2006
).
29.
F.
Lombardi
,
H. J.
Herrmann
,
D.
Plenz
, and
L.
de Arcangelis
, “
Temporal correlations in avalanche occurrence
,”
Sci. Rep.
6
,
24690
(
2016
).
You do not currently have access to this content.