Self-similarity across length scales is pervasively observed in natural systems. Here, we investigate topological self-similarity in complex networks representing diverse forms of connectivity in the brain and some related dynamical systems, by considering the correlation between edges directly connecting any two nodes in a network and indirect connection between the same via all triangles spanning the rest of the network. We note that this aspect of self-similarity, which is distinct from hierarchically nested connectivity (coarse-grain similarity), is closely related to idempotence of the matrix representing the graph. We introduce two measures, ι(1) and ι(), which represent the element-wise correlation coefficients between the initial matrix and the ones obtained after squaring it once or infinitely many times, and term the matrices which yield large values of these parameters “quasi-idempotent”. These measures delineate qualitatively different forms of “shallow” and “deep” quasi-idempotence, which are influenced by nodal strength heterogeneity. A high degree of quasi-idempotence was observed for partially synchronized mean-field Kuramoto oscillators with noise, electronic chaotic oscillators, and cultures of dissociated neurons, wherein the expression of quasi-idempotence correlated strongly with network maturity. Quasi-idempotence was also detected for macro-scale brain networks representing axonal connectivity, synchronization of slow activity fluctuations during idleness, and co-activation across experimental tasks, and preliminary data indicated that quasi-idempotence of structural connectivity may decrease with ageing. This initial study highlights that the form of network self-similarity indexed by quasi-idempotence is detectable in diverse dynamical systems, and draws attention to it as a possible basis for measures representing network “collectivity” and pattern formation.

1.
J.
Kwapień
and
S.
Drożdż
,
Phys. Rep.
515
,
115
(
2012
).
2.
S.
Achard
,
D. S.
Bassett
,
A.
Meyer-Lindenberg
, and
E.
Bullmore
,
Phys. Rev. E
77
,
036104
(
2008
).
3.
D. R.
Chialvo
,
Nat. Phys.
6
,
744
(
2010
).
4.
P.
Expert
,
R.
Lambiotte
,
D. R.
Chialvo
,
K.
Christensen
,
H. J.
Jensen
,
D. J.
Sharp
, and
F.
Turkheimer
,
J. R. Soc. Interface
8
,
472
(
2011
).
5.
O.
Plenz
,
O.
Niebur
, and
H. G.
Schuster
,
Criticality in Neural Systems
(
Wiley
,
Hoboken, NJ, USA
,
2014
).
7.
G.
Werner
,
Front. Physiol.
1
,
15
(
2010
).
8.
M. P.
van den Heuvel
,
R. S.
Kahn
,
J.
Goñi
, and
O.
Sporns
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
11372
(
2012
).
9.
E.
Bullmore
and
O.
Sporns
,
Nat. Rev. Neurosci.
13
,
336
(
2012
).
10.
S. S.
Singh
,
B.
Khundrakpam
,
A. T.
Reid
,
J. D.
Lewis
,
A. C.
Evans
,
R.
Ishrat
,
B. I.
Sharma
, and
R. K.
Singh
,
Sci. Rep.
6
,
24926
(
2016
).
11.
S.
Lorthois
,
F.
Cassot
, and
A.
Di Ieva
,
The Fractal Geometry of the Brain
(
Springer
,
New York, NY, USA
,
2016
).
12.
C.
Song
,
S.
Havlin
, and
H. A.
Makse
,
Nature
433
,
392
(
2005
).
13.
B.
Peirce
,
Linear Associative Algebra
(
Read before the National Academy of Sciences
,
Washington, USA
,
1870
).
14.
K. M.
Hoffman
and
R.
Kunze
,
Linear Algebra
(
Pearson
,
New York, NY, USA
,
1971
).
15.
K.
Hoffman
,
Analysis in Euclidean Space
(
Dover Editions
,
Mineola, NY, USA
,
2007
).
16.
G.
Akemann
,
J.
Baik
, and
P.
Di Francesco
,
The Oxford Handbook of Random Matrix Theory
(
Oxford University Press
,
Oxford, UK
,
2011
).
17.
K.
Atkinson
,
An Introduction to Numerical Analysis
(
Wiley
,
Hoboken, NJ, USA
,
1989
).
18.
P.
Erdős
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci.
5
,
17
(
1960
).
19.
D. J.
Watts
and
S. H.
Strogatz
,
Nature
393
,
440
(
1998
).
20.
A. L.
Barabási
and
R.
Albert
,
Science
286
,
509
(
1999
).
21.
K.
Delp
, in
Seoul Conference Proceedings, Seoul, South Korea
(
2014
), pp.
73
78
.
22.
R. A.
Fisher
,
Statistical Methods for Research Workers
(
Macmillan Publishers
,
London, UK
,
1970
).
23.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
24.
M. G.
Kitzbichler
,
M. L.
Smith
,
S. R.
Christensen
, and
E.
Bullmore
,
PLoS Comput. Biol.
5
,
e1000314
(
2009
).
25.
J.
Cabral
,
M. L.
Kringelbach
, and
G.
Deco
,
Prog. Neurobiol.
114
,
102
(
2014
).
26.
F. A.
Rodrigues
,
T.
Peron
,
H.
Peng
, and
J.
Kurths
,
Phys. Rep.
610
,
1
(
2016
).
27.
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer
,
Berlin, Germany
,
1992
).
28.
L.
Minati
,
Chaos
25
,
123107
(
2015
).
29.
D. A.
Wagenaar
,
J.
Pine
, and
S. M.
Potter
,
BMC Neurosci.
7
,
11
(
2006
).
30.
J. H.
Downes
,
M. W.
Hammond
,
D.
Xydas
,
M. C.
Spencer
,
V. M.
Becerra
,
K.
Warwick
,
B. J.
Whalley
, and
S. J.
Nasuto
,
PLoS Comput. Biol.
8
,
e1002522
(
2012
).
31.
P.
Massobrio
,
V.
Pasquale
, and
S.
Martinoia
,
Sci. Rep.
5
,
10578
(
2015
).
32.
D. A.
Wagenaar
,
T. B.
DeMarse
, and
S. M.
Potter
, in
Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering
(
2005
), p.
518
.
33.
D.
Poli
,
V. P.
Pastore
, and
P.
Massobrio
,
Front. Neural Circuits
9
,
57
(
2015
).
34.
O.
Sporns
,
Networks of the Brain
(
MIT Press
,
Cambridge, MA, USA
,
2009
).
35.
P.
Hagmann
,
L.
Cammoun
,
X.
Gigandet
,
R.
Meuli
,
C. J.
Honey
,
V. J.
Wedeen
, and
O.
Sporns
,
PLoS Biol.
6
,
e159
(
2008
).
36.
E.
Bullmore
and
O.
Sporns
,
Nat. Rev. Neurosci.
10
,
186
(
2009
).
37.
N. A.
Crossley
,
A.
Mechelli
,
P. E.
Vértes
,
T. T.
Winton-Brown
,
A. X.
Patel
,
C. E.
Ginestet
,
P.
McGuire
, and
E. T.
Bullmore
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
11583
(
2013
).
38.
S. E.
Petersen
and
O.
Sporns
,
Neuron
88
,
207
(
2015
).
39.
L.
Cammoun
,
X.
Gigandet
,
D.
Meskaldji
,
J. P.
Thiran
,
O.
Sporns
,
K. Q.
Do
,
P.
Maeder
,
R.
Meuli
, and
P.
Hagmann
,
J. Neurosci. Methods
203
,
386
397
(
2012
).
40.
M.
Xia
,
J.
Wang
, and
Y.
He
,
PLoS One
8
,
e68910
(
2013
).
41.
A. E.
Cavanna
and
M. R.
Trimble
,
Brain
129
,
564
(
2006
).
42.
C.
Rosazza
and
L.
Minati
,
Neurol. Sci.
32
,
773
(
2011
).
43.
P. T.
Fox
and
J. L.
Lancaster
,
Nat. Rev. Neurosci.
3
,
319
(
2002
).
44.
S. W.
Oh
,
J. A.
Harris
,
L.
Ng
,
B.
Winslow
,
N.
Cain
,
S.
Mihalas
,
Q.
Wang
,
C.
Lau
,
L.
Kuan
,
A. M.
Henry
,
M. T.
Mortrud
,
B.
Ouellette
,
T. N.
Nguyen
,
S. A.
Sorensen
,
C. R.
Slaughterbeck
,
W.
Wakeman
,
Y.
Li
,
D.
Feng
,
A.
Ho
,
E.
Nicholas
,
K. E.
Hirokawa
,
P.
Bohn
,
K. M.
Joines
,
H.
Peng
,
M. J.
Hawrylycz
,
J. W.
Phillips
,
J. G.
Hohmann
,
P.
Wohnoutka
,
C. R.
Gerfen
,
C.
Koch
,
A.
Bernard
,
C.
Dang
,
A. R.
Jones
, and
H.
Zeng
,
Nature
508
,
207
(
2014
).
45.
E.
Calabrese
,
A.
Badea
,
G.
Cofer
,
Y.
Qi
, and
G. A.
Johnson
,
Cereb. Cortex
25
,
4628
(
2015
).
46.
H.
Hintiryan
,
N. N.
Foster
,
I.
Bowman
,
M.
Bay
,
M. Y.
Song
,
L.
Gou
,
S.
Yamashita
,
M. S.
Bienkowski
,
B.
Zingg
,
M.
Zhu
,
X. W.
Yang
,
J. C.
Shih
,
A. W.
Toga
, and
H. W.
Dong
,
Nat. Neurosci.
19
,
1100
(
2016
).
47.
K. B.
Nooner
,
S. J.
Colcombe
,
R. H.
Tobe
,
M.
Mennes
,
M. M.
Benedict
,
A. L.
Moreno
,
L. J
Panek
,
S.
Brown
,
S. T.
Zavitz
,
Q.
Li
,
S.
Sikka
,
D.
Gutman
,
S.
Bangaru
,
R. T.
Schlachter
,
S. M.
Kamiel
,
A. R.
Anwar
,
C. M.
Hinz
,
M. S.
Kaplan
,
A. B.
Rachlin
,
S.
Adelsberg
,
B.
Cheung
,
R.
Khanuja
,
C.
Yan
,
C. C.
Craddock
,
V.
Calhoun
,
W.
Courtney
,
M.
King
,
D.
Wood
,
C. L.
Cox
,
A. M.
Kelly
,
A.
Di Martino
,
E.
Petkova
,
P. T.
Reiss
,
N.
Duan
,
D.
Thomsen
,
B.
Biswal
,
B.
Coffey
,
M. J.
Hoptman
,
D. C.
Javitt
,
N.
Pomara
,
J. J.
Sidtis
,
H. S.
Koplewicz
,
F. X.
Castellanos
,
B. L.
Leventhal
, and
M. P.
Milham
,
Front Neurosci.
6
,
152
(
2012
).
48.
J. A.
Brown
,
J. D.
Rudie
,
A.
Bandrowski
,
J. D.
Van Horn
, and
S. Y.
Bookheimer
,
Front. Neuroinf.
6
,
28
(
2012
).
49.
S.
Hirsiger
,
V.
Koppelmans
,
S.
Mérillat
,
F.
Liem
,
B.
Erdeniz
,
R. D.
Seidler
, and
L.
Jäncke
,
Hum. Brain Mapp.
37
,
855
(
2016
).
50.
A. M.
Fjell
,
M. H.
Sneve
,
H.
Grydeland
,
A. B.
Storsve
, and
K. B.
Walhovd
,
Cereb. Cortex
26
,
1272
(
2016
).
51.
O.
Sporns
,
G.
Tononi
, and
R.
Kötter
, “
The human connectome: A structural description of the human brain
,”
PLoS Comput. Biol.
1
,
e42
(
2005
).
52.
H. C.
Barrett
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
10733
(
2012
).
53.
S.
Van Dongen
,
SIAM J. Matrix. Anal. Appl.
30
,
121
(
2008
).
54.
O.
Sporns
,
C. J.
Honey
, and
R.
Kötter
,
PLoS One
2
,
e1049
(
2007
).
55.
G.
Zamora-López
,
C.
Zhou
, and
J.
Kurths
,
Front. Neuroinf.
4
,
1
(
2010
).
56.
D.
Liben-Nowell
and
J.
Kleinberg
, in
CIKM‘03 Proceedings of the 12th International Conference on Information and Knowledge Management
(
2003
), p.
556
.
57.
S. C.
de Lange
,
M. P.
van den Heuvel
, and
M. A.
de Reus
,
Neuroimage
141
,
357
(
2016
).
58.
R. E.
Brown
and
P. M.
Milner
,
Nat. Rev. Neurosci.
4
,
1013
(
2003
).
59.
W.
Quattrociocchi
,
G.
Caldarelli
, and
A.
Scala
,
PLoS One
9
,
e87986
(
2014
).
60.
S.
Prasad
and
L. D.
Zuck
, in
Proceedings of the EXPRESS/SOS
(
2016
), p.
30
.
61.
T.
Sun
,
P.
Meakin
, and
T.
Jøssang
,
Phys. Rev. E
49
,
4865
(
1994
).
62.
M. E. J.
Newman
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
404
(
2001
).
63.
X.
Liang
,
J.
Wang
,
C.
Yan
,
N.
Shu
,
K.
Xu
,
G.
Gong
, and
Y.
He
,
PLoS One
7
,
e32766
(
2012
).
64.
A.
Fornito
and
E. T.
Bullmore
,
Eur. Neuropsychopharmacol.
25
,
733
(
2015
).
65.
W.
de Haan
,
K.
Mott
,
E. C.
van Straaten
,
P.
Scheltens
, and
C. J.
Stam
,
PLoS Comput. Biol.
8
,
e1002582
(
2012
).
66.
J. O.
Maximo
,
E. J.
Cadena
, and
R. K.
Kana
,
Neuropsychol. Rev.
24
,
16
(
2014
).
You do not currently have access to this content.