We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

1.
S.
Wasserman
and
K.
Faust
,
Social Network Analysis: Methods and Applications
(
Cambridge University Press
,
Cambridge, UK
,
1994
).
2.
L. C.
Freeman
, “
Centrality in social networks: Conceptual clarification
,”
Soc. Networks
1
,
215
239
(
1979
).
3.
P.
Bonacich
, “
Power and centrality: A family of measures
,”
Am. J. Sociol.
92
,
1170
1182
(
1987
).
4.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
893
(
2010
).
5.
R. K.
Pan
and
J.
Saramäki
, “
Path lengths, correlations, and centrality in temporal networks
,”
Phys. Rev. E
84
,
016105
(
2011
).
6.
J.
Zhang
,
X.-K.
Xu
,
P.
Li
,
K.
Zhang
, and
M.
Small
, “
Node importance for dynamical process on networks: A multiscale characterization
,”
Chaos
21
,
016107
(
2011
).
7.
K.
Klemm
,
M. A.
Serrano
,
V. M.
Eguíluz
, and
M.
San Miguel
, “
A measure of individual role in collective dynamics
,”
Sci. Rep.
2
,
292
(
2012
).
8.
M.-T.
Kuhnert
,
C.
Geier
,
C. E.
Elger
, and
K.
Lehnertz
, “
Identifying important nodes in weighted functional brain networks: A comparison of different centrality approaches
,”
Chaos
22
,
023142
(
2012
).
9.
V.
Nicosia
,
R.
Criado
,
M.
Romance
,
G.
Russo
, and
V.
Latora
, “
Controlling centrality in complex networks
,”
Sci. Rep.
2
,
218
(
2012
).
10.
G.
Tanaka
,
K.
Morino
, and
K.
Aihara
, “
Dynamical robustness in complex networks: the crucial role of low-degree nodes
,”
Sci. Rep.
2
,
232
(
2012
).
11.
Y.
Du
,
C.
Gao
,
X.
Chen
,
Y.
Hu
,
R.
Sadiq
, and
Y.
Deng
, “
A new closeness centrality measure via effective distance in complex networks
,”
Chaos
25
,
033112
(
2015
).
12.
D. F.
Gleich
, “
PageRank beyond the web
,”
SIAM Rev.
57
,
321
363
(
2015
).
13.
G.
Lawyer
, “
Understanding the influence of all nodes in a network
,”
Sci. Rep.
5
,
8665
(
2015
).
14.
L.
,
T.
Zhou
,
Q.-M.
Zhang
, and
H. E.
Stanley
, “
The H-index of a network node and its relation to degree and coreness
,”
Nat. Commun.
7
,
10168
(
2016
).
15.
L.
,
D.
Chen
,
X.-L.
Ren
,
Q.-M.
Zhang
,
Y.-C.
Zhang
, and
T.
Zho
, “
Vital nodes identification in complex networks
,”
Phys. Rep.
650
,
1
63
(
2016
).
16.
M. P.
van den Heuvel
and
O.
Sporns
, “
Network hubs in the human brain
,”
Trends Cognit. Sci.
17
,
683
696
(
2013
).
17.
C. J.
Stam
, “
Modern network science of neurological disorders
,”
Nat. Rev. Neurosci.
15
,
683
695
(
2014
).
18.
A.
Navas
,
D.
Papo
,
S.
Boccaletti
,
F.
Del-Pozo
,
R.
Bajo
,
F.
Maestú
,
J.
Martínez
,
P.
Gil
,
I.
Sendiña-Nadal
, and
J. M.
Buldú
, “
Functional hubs in mild cognitive impairment
,”
Int. J. Bifurcation Chaos
25
,
1550034
(
2015
).
19.
M. M.
Engels
,
C. J.
Stam
,
W. M.
van der Flier
,
P.
Scheltens
,
H.
de Waal
, and
E. C.
van Straaten
, “
Declining functional connectivity and changing hub locations in Alzheimer's disease: An EEG study
,”
BMC Neurol.
15
,
1
8
(
2015
).
20.
M. A.
Kramer
,
E. D.
Kolaczyk
, and
H. E.
Kirsch
, “
Emergent network topology at seizure onset in humans
,”
Epilepsy Res.
79
,
173
186
(
2008
).
21.
C.
Wilke
,
G.
Worrell
, and
B.
He
, “
Graph analysis of epileptogenic networks in human partial epilepsy
,”
Epilepsia
52
,
84
93
(
2011
).
22.
G.
Varotto
,
L.
Tassi
,
S.
Franceschetti
,
R.
Spreafico
, and
F.
Panzica
, “
Epileptogenic networks of type II focal cortical dysplasia: A stereo-EEG study
,”
NeuroImage
61
,
591
598
(
2012
).
23.
S. P.
Burns
,
S.
Santaniello
,
R. B.
Yaffe
,
C. C.
Jouny
,
N. E.
Crone
,
G. K.
Bergey
,
W. S.
Anderson
, and
S. V.
Sarma
, “
Network dynamics of the brain and influence of the epileptic seizure onset zone
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
E5321
E5330
(
2014
).
24.
C.
Geier
,
S.
Bialonski
,
C. E.
Elger
, and
K.
Lehnertz
, “
How important is the seizure onset zone for seizure dynamics?
,”
Seizure
25
,
160
166
(
2015
).
25.
F.
Zubler
,
H.
Gast
,
E.
Abela
,
C.
Rummel
,
M.
Hauf
,
R.
Wiest
,
C.
Pollo
, and
K.
Schindler
, “
Detecting functional hubs of ictogenic networks
,”
Brain Topogr.
28
,
305
317
(
2015
).
26.
I. A.
Nissen
,
N. E.
van Klink
,
M.
Zijlmans
,
C. J.
Stam
, and
A.
Hillebrand
, “
Brain areas with epileptic high frequency oscillations are functionally isolated in MEG virtual electrode networks
,”
Clin. Neurophysiol.
127
,
2581
2591
(
2016
).
27.
E.
van Dellen
,
L.
Douw
,
A.
Hillebrand
,
P. C.
de Witt Hamer
,
J. C.
Baayen
,
J. J.
Heimans
,
J. C.
Reijneveld
, and
C. J.
Stam
, “
Epilepsy surgery outcome and functional network alterations in longitudinal MEG: A minimum spanning tree analysis
,”
NeuroImage
86
,
354
363
(
2014
).
28.
S.-H.
Jin
,
W.
Jeong
, and
C. K.
Chung
, “
Mesial temporal lobe epilepsy with hippocampal sclerosis is a network disorder with altered cortical hubs
,”
Epilepsia
56
,
772
779
(
2015
).
29.
S.-H.
Jin
,
W.
Jeong
, and
C. K.
Chung
, “
Focal cortical dysplasia alters electrophysiological cortical hubs in the resting-state
,”
Clin. Neurophysiol.
126
,
1482
1492
(
2015
).
30.
M.-T.
Kuhnert
,
C. E.
Elger
, and
K.
Lehnertz
, “
Long-term variability of global statistical properties of epileptic brain networks
,”
Chaos
20
,
043126
(
2010
).
31.
M. A.
Kramer
,
U. T.
Eden
,
K. Q.
Lepage
,
E. D.
Kolaczyk
,
M. T.
Bianchi
, and
S. S.
Cash
, “
Emergence of persistent networks in long-term intracranial EEG recordings
,”
J. Neurosci.
31
,
15757
15767
(
2011
).
32.
C.
Geier
,
K.
Lehnertz
, and
S.
Bialonski
, “
Time-dependent degree-degree correlations in epileptic brain networks: from assortative to disassortative mixing
,”
Front. Hum. Neurosci.
9
,
462
(
2015
).
33.
M.-T.
Kuhnert
,
S.
Bialonski
,
N.
Noennig
,
H.
Mai
,
H.
Hinrichs
,
C.
Helmstaedter
, and
K.
Lehnertz
, “
Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks
,”
PLoS One
8
,
e80273
(
2013
).
34.
F.
Rosenow
and
H.
Lüders
, “
Presurgical evaluation of epilepsy
,”
Brain
124
,
1683
1700
(
2001
).
35.
M.-T.
Horstmann
,
S.
Bialonski
,
N.
Noennig
,
H.
Mai
,
J.
Prusseit
,
J.
Wellmer
,
H.
Hinrichs
, and
K.
Lehnertz
, “
State dependent properties of epileptic brain networks: Comparative graph-theoretical analyses of simultaneously recorded EEG and MEG
,”
Clin. Neurophysiol.
121
,
172
185
(
2010
).
36.
F.
Mormann
,
K.
Lehnertz
,
P.
David
, and
C. E.
Elger
, “
Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
,”
Physica D
144
,
358
369
(
2000
).
37.
B.
Boashash
,
Time Frequency Signal Analysis: Methods and Applications
(
Longman Cheshire
,
Melbourne
,
1992
).
38.
S.
Blanco
,
H.
Garcia
,
R.
Quian Quiroga
,
L.
Romanelli
, and
O. A.
Rosso
, “
Stationarity of the EEG series
,”
IEEE Eng. Med. Biol.
14
,
395
399
(
1995
).
39.
C.
Rieke
,
K.
Sternickel
,
R. G.
Andrzejak
,
C. E.
Elger
,
P.
David
, and
K.
Lehnertz
, “
Measuring nonstationarity by analyzing the loss of recurrence in dynamical systems
,”
Phys. Rev. Lett.
88
,
244102
(
2002
).
40.
G.
Ansmann
and
K.
Lehnertz
, “
Surrogate-assisted analysis of weighted functional brain networks
,”
J. Neurosci. Methods
208
,
165
172
(
2012
).
41.
A.
Barrat
,
M.
Barthélemy
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
The architecture of complex weighted networks
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
3747
3752
(
2004
).
42.
T.
Opsahl
,
F.
Agneessens
, and
J.
Skvoretz
, “
Node centrality in weighted networks: Generalizing degree and shortest paths
,”
Soc. Networks
32
,
245
251
(
2010
).
43.
U.
Brandes
, “
A faster algorithm for betweenness centrality
,”
J. Math. Sociol.
25
,
163
177
(
2001
).
44.
W. H.
Press
and
G. B.
Rybicki
, “
Fast algorithm for spectral analysis of unevenly sampled data
,”
Astrophys. J.
338
,
277
280
(
1989
).
45.
R. A.
Fisher
, “
On the interpretation of χ2 from contingency tables, and the calculation of p
,”
J. R. Stat. Soc.
85
,
87
94
(
1922
).
46.
J. R.
Sato
,
C. E.
Biazoli
,
G. A.
Salum
,
A.
Gadelha
,
N.
Crossley
,
T. D.
Satterthwaite
,
G.
Vieira
,
A.
Zugman
,
F. A.
Picon
,
P. M.
Pan
,
M. Q.
Hoexter
,
M.
Anes
,
L. M.
Moura
,
M. A. G.
Del'aquilla
,
E.
Amaro
,
P.
McGuire
,
A. L.
Lacerda
,
L. A.
Rohde
,
E. C.
Miguel
,
A. P.
Jackowski
, and
R. A.
Bressan
, “
Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents
,”
Hum. Brain Mapp.
36
,
4926
4937
(
2015
).
47.
C.-Y.
Yang
and
C.-P.
Lin
, “
Time-varying network measures in resting and task states using graph theoretical analysis
,”
Brain Topogr.
28
,
529
540
(
2015
).
48.
S.
Chiang
,
A.
Cassese
,
M.
Guindani
,
M.
Vannucci
,
H. J.
Yeh
,
Z.
Haneef
, and
J. M.
Stern
, “
Time-dependence of graph theory metrics in functional connectivity analysis
,”
NeuroImage
125
,
601
615
(
2016
).
You do not currently have access to this content.