In this paper, a generalized description of the complex topology of turbulent premixed flames stabilized in a model gas turbine combustor is obtained using network analysis. Networks are created using the visibility algorithm applied to points on the flame edge obtained from Hydroxyl radical (OH)—Planar Laser Induced Fluorescence images of turbulent premixed flames. The network structure thus obtained showed the emergence of a few massively connected nodes which were found to represent the folded regions of the flame front. These nodes, which are called the hubs of the network, are vital for determining the overall structure of the flame front. Degree distribution of the formulated networks is used to characterize the flame-turbulence interaction inherent in the system. Turbulent flame front networks were found to be rigid enough to be unaffected by random perturbations but highly vulnerable towards coordinated removal of hubs or folds. These findings could serve as the first network-analytic approach to characterize turbulence-flame interaction dynamics with the use of a flourishing network theory, which enhances ongoing works based on vortex dynamics, hydrodynamic stability, and thermo-acoustic instability.

1.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
2.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
3.
M.
Newman
,
Networks: An Introduction
(
Oxford University Press
,
2010
).
4.
A.
Barrat
,
M.
Barthelemy
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
The architecture of complex weighted networks
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
3747
3752
(
2004
).
5.
M.
Barthélemy
,
A.
Barrat
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Velocity and hierarchical spread of epidemic outbreaks in scale-free networks
,”
Phys. Rev. Lett.
92
,
178701
(
2004
).
6.
M.
Murugesan
and
R.
Sujith
, “
Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability
,”
J. Fluid Mech.
772
,
225
245
(
2015
).
7.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci.
105
,
4972
4975
(
2008
).
8.
X.
Xu
,
J.
Zhang
, and
M.
Small
, “
Superfamily phenomena and motifs of networks induced from time series
,”
Proc. Natl. Acad. Sci.
105
,
19601
19605
(
2008
).
9.
R.
Friedrich
,
J.
Peinke
,
M.
Sahimi
, and
M. R. R.
Tabar
, “
Approaching complexity by stochastic methods: From biological systems to turbulence
,”
Phys. Rep.
506
,
87
162
(
2011
).
10.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Recurrence networks—A novel paradigm for nonlinear time series analysis
,”
New J. Phys.
12
,
033025
(
2010
).
11.
K.
Taira
,
A. G.
Nair
, and
S. L.
Brunton
, “
Network structure of two-dimensional decaying isotropic turbulence
,”
J. Fluid Mech.
795
,
R2
(
2016
).
12.
A.
Charakopoulos
,
T.
Karakasidis
,
P.
Papanicolaou
, and
A.
Liakopoulos
, “
The application of complex network time series analysis in turbulent heated jets
,”
Chaos
24
,
024408
(
2014
).
13.
A. G.
Nair
and
K.
Taira
, “
Network-theoretic approach to sparsified discrete vortex dynamics
,”
J. Fluid Mech.
768
,
549
571
(
2015
).
14.
D. A.
Spielman
and
N.
Srivastava
, “
Graph sparsification by effective resistances
,”
SIAM J. Comput.
40
,
1913
1926
(
2011
).
15.
J. H.
Chen
and
H. G.
Im
, “
Correlation of flame speed with stretch in turbulent premixed methane/air flames
,” in
Symposium (International) on Combustion
(
Elsevier
,
1998
), Vol.
27
, pp.
819
826
.
16.
J. H.
Chen
,
E. R.
Hawkes
,
R.
Sankaran
,
S. D.
Mason
, and
H. G.
Im
, “
Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. I. Fundamental analysis and diagnostics
,”
Combust. Flame
145
,
128
144
(
2006
).
17.
H. G.
Im
and
J. H.
Chen
, “
Effects of flow strain on triple flame propagation
,”
Combust. Flame
126
,
1384
1392
(
2001
).
18.
S.
Chaudhuri
, “
Life of flame particles embedded in premixed flames interacting with near isotropic turbulence
,”
Proc. Combust. Inst.
35
,
1305
1312
(
2015
).
19.
S.
Pope
, “
Lagrangian pdf methods for turbulent flows
,”
Annu. Rev. Fluid Mech.
26
,
23
63
(
1994
).
20.
P.
Yeung
and
S.
Pope
, “
Lagrangian statistics from direct numerical simulations of isotropic turbulence
,”
J. Fluid Mech.
207
,
531
586
(
1989
).
21.
S.
Girimaji
and
S.
Pope
, “
Propagating surfaces in isotropic turbulence
,”
J. Fluid Mech.
234
,
247
277
(
1992
).
22.
H.
Makita
and
K.
Sassa
, “
Active turbulence generation in a laboratory wind tunnel
,” in
Advances in Turbulence 3: Proceedings of the Third European Turbulence Conference Stockholm, July 3–6, 1990
, edited by
A. V.
Johansson
and
P. H.
Alfredsson
(
Springer
,
Berlin/Heidelberg
,
1991
), pp.
497
505
.
23.
H. S.
Kang
,
S.
Chester
, and
C.
Meneveau
, “
Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation
,”
J. Fluid Mech.
480
,
129
160
(
2003
).
24.
J. V.
Larssen
and
W. J.
Devenport
, “
On the generation of large-scale homogeneous turbulence
,”
Exp. Fluids
50
,
1207
1223
(
2011
).
25.
J.
Canny
, “
A computational approach to edge detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-8
,
679
698
(
1986
).
26.
H. A.
Uranakara
,
S.
Chaudhuri
,
H. L.
Dave
,
P. G.
Arias
, and
H. G.
Im
, “
A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames
,”
Combust. Flame
163
,
220
240
(
2016
).
27.
B.
Luque
,
L.
Lacasa
,
F.
Ballesteros
, and
J.
Luque
, “
Horizontal visibility graphs: Exact results for random time series
,”
Phys. Rev. E
80
,
046103
(
2009
).
28.
J. E.
Bresenham
, “
Algorithm for computer control of a digital plotter
,”
IBM Syst. J.
4
,
25
30
(
1965
).
29.
M.
Scholz
, “
Node similarity as a basic principle behind connectivity in complex networks
,”
J. Data Mining Dig. Human.
(published online, 2015).
30.
J.
Zhang
and
M.
Small
, “
Complex network from pseudoperiodic time series: Topology versus dynamics
,”
Phys. Rev. Lett.
96
,
238701
(
2006
).
31.
J.
Zhang
,
J.
Sun
,
X.
Luo
,
K.
Zhang
,
T.
Nakamura
, and
M.
Small
, “
Characterizing pseudoperiodic time series through the complex network approach
,”
Phys. D: Nonlinear Phenom.
237
,
2856
2865
(
2008
).
32.
N.
Chakraborty
,
M.
Klein
, and
N.
Swaminathan
, “
Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames
,”
Proc. Combust. Inst.
32
,
1409
1417
(
2009
).
33.
P. E.
Hamlington
,
A. Y.
Poludnenko
, and
E. S.
Oran
, “
Interactions between turbulence and flames in premixed reacting flows
,”
Phys. Fluids
23
,
125111
(
2011
).
34.
J. H.
Chen
,
T.
Echekki
, and
W.
Kollmann
, “
The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion
,”
Combust. Flame
116
,
15
48
(
1999
).
35.
M.
Bastian
,
S.
Heymann
, and
M.
Jacomy
,
Gephi: An Open Source Software for Exploring and Manipulating Networks
(
International AAAI Conference on Weblogs and Social Media
,
2009
).
36.
E. W.
Dijkstra
, “
A note on two problems in connexion with graphs
,”
Numer. Math.
1
,
269
271
(
1959
).
37.
F. J.
Massey
, Jr.
, “
The kolmogorov-smirnov test for goodness of fit
,”
J. Am. Stat. Assoc.
46
,
68
78
(
1951
).
38.
S.
Chaudhuri
,
S.
Kostka
,
M. W.
Renfro
, and
B. M.
Cetegen
, “
Blowoff dynamics of bluff body stabilized turbulent premixed flames
,”
Combust. Flame
157
,
790
802
(
2010
).
39.
S.
Chaudhuri
,
S.
Kostka
,
M. W.
Renfro
, and
B. M.
Cetegen
, “
Blowoff mechanism of harmonically forced bluff body stabilized turbulent premixed flames
,”
Combust. Flame
159
,
638
640
(
2012
).
40.
P.
Griebel
,
E.
Boschek
, and
P.
Jansohn
, “
Lean blowout limits and nox emissions of turbulent, lean premixed, hydrogen-enriched methane/air flames at high pressure
,”
J. Eng. Gas Turbines and Power
129
,
404
410
(
2007
).
41.
V.
Karpov
and
E.
Severin
, “
Turbulent burn-up rates of propane-air flames determined in a bomb with agitators
,”
Combust., Explos. Shock Waves
14
,
158
163
(
1978
).
42.
I.
Shepherd
, “
Flame surface density and burning rate in premixed turbulent flames
,” in
Symposium (International) on Combustion
(
Elsevier
,
1996
), Vol.
26
, pp.
373
379
.
43.
M.
Wu
,
S.
Kwon
,
J.
Driscoll
, and
G.
Faeth
, “
Turbulent premixed hydrogen/air flames at high reynolds numbers
,”
Combust. Sci. Technol.
73
,
327
350
(
1990
).
44.
P.
Griebel
,
R.
Bombach
,
A.
Inauen
,
R.
Scharen
,
S.
Schenker
, and
P.
Siewert
, “
Flame characteristics and turbulent flame speeds of turbulent, high-pressure, lean premixed methane/air flames
,” in
ASME Turbo Expo 2005: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2005
), pp.
405
413
.
45.
N.
Peters
, “
Laminar flamelet concepts in turbulent combustion
,” in
Symposium (International) on Combustion
(
Elsevier
,
1988
), Vol.
21
, pp.
1231
1250
.
46.
A.
Lipatnikov
,
Fundamentals of Premixed Turbulent Combustion
(
CRC Press
,
Boca Raton, Florida
,
2012
).
47.
X. F.
Wang
and
G.
Chen
, “
Synchronization in small-world dynamical networks
,”
Int. J. Bifurcation and Chaos
12
,
187
192
(
2002
).
48.
W.
Yu
,
G.
Chen
, and
J.
, “
On pinning synchronization of complex dynamical networks
,”
Automatica
45
,
429
435
(
2009
).
49.
P.
DeLellis
,
M.
di Bernardo
, and
M.
Porfiri
, “
Pinning control of complex networks via edge snapping
,”
Chaos
21
,
033119
(
2011
).
50.
C. K.
Law
,
Combustion Physics
(
Cambridge University Press
,
Cambridge, England
,
2010
).
51.
R. J.
Kee
,
F. M.
Rupley
, and
J. A.
Miller
, “
Chemkin-ii: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics
,” Technical Report (Sandia National Labs., Livermore, CA, USA,
1989
).
You do not currently have access to this content.