An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

1.
C. P.
Dettmann
, “
Diffusion in the Lorentz gas
,”
Commun. Theor. Phys.
62
,
521
(
2014
).
2.
F.
Haake
,
Quantum Signatures of Chaos
(
Springer Science & Business Media
,
2013
), Vol. 54.
3.
S.
Bittner
,
B.
Dietz
,
H.
Harney
,
M.
Miski-Oglu
,
A.
Richter
, and
F.
Schäfer
, “
Scattering experiments with microwave billiards at an exceptional point under broken time-reversal invariance
,”
Phys. Rev. E
89
,
032909
(
2014
).
4.
G.
Birkhoff
,
Dynamical Systems
(
American Mathematical Society Colloquium Publications
,
1927
), Vol. 9.
5.
Ya. G.
Sinai
, “
Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards
,”
Uspekhi Mat. Nauk
25:2
(152),
141
192
(
1970
); [Russian Math. Surveys, 25:2, 137–189 (1970)].
6.
Y.
Sinai
, “
Development of Krylov's ideas
,”
Afterword to NS Krylov's “Works on the Foundations of Statistical Physics,” see reference [K (1979)]
(
Princeton University Press
,
1979
).
7.
A.
Avila
,
J.
De Simoi
, and
V.
Kaloshin
, “
An integrable deformation of an ellipse of small eccentricity is an ellipse
,” preprint arXiv:1412.2853 (
2014
).
8.
V.
Lazutkin
, “
The existence of caustics for a billiard problem in a convex domain
,”
Math. USSR - Izvestiya
7
,
185
214
(
1973
).
9.
R.
Douady
, “
Application du théoreme des tores invariants
,”
These 3eme Cycle (Université Paris
VII,
1982
).
10.
L.
Bunimovich
, “
On ergodic properties of certain billiards
,”
Funct. Anal. Appl.
8
,
254
255
(
1974
).
11.
A.
Grigo
, “
Billiards and statistical mechanics
,” Ph.D. thesis (
Georgia Institute of Technology
,
2009
).
12.
L.
Bunimovich
and
A.
Grigo
, “
Focusing components in typical chaotic billiards should be absolutely focusing
,”
Commun. Math. Phys.
293
,
127
143
(
2010
).
13.
C.
Foltin
, “
Billiards with positive topological entropy
,”
Nonlinearity
15
,
2053
(
2002
).
14.
Y.
Chen
, “
On topological entropy of billiard tables with small inner scatterers
,”
Adv. Math.
224
,
432
460
(
2010
).
15.
G.
Gouesbet
,
S.
Meunier-Guttin-Cluzel
, and
G.
Grehan
, “
Periodic orbits in Hamiltonian chaos of the annular billiard
,”
Phys. Rev. E
65
,
016212
(
2001
).
16.
N.
Saitô
,
H.
Hirooka
,
J.
Ford
,
F.
Vivaldi
, and
G.
Walker
, “
Numerical study of billiard motion in an annulus bounded by non-concentric circles
,”
Physica D
5
,
273
286
(
1982
).
17.
M.
Correia
and
H.
Zhang
, “
Stability and ergodicity of moon billiards
,”
Chaos
25
,
083110
(
2015
).
18.
D.
da Costa
,
C.
Dettmann
,
J.
de Oliveira
, and
E.
Leonel
, “
Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism
,”
Chaos
25
,
033109
(
2015
).
19.
E.
Altmann
,
T.
Friedrich
,
A.
Motter
,
H.
Kantz
, and
A.
Richter
, “
Prevalence of marginally unstable periodic orbits in chaotic billiards
,”
Phys. Rev. E
77
,
016205
(
2008
).
20.
N.
Chernov
and
R.
Markarian
,
Chaotic Billiards
(
American Mathematical Society
,
2006
), Vol. 127.
21.
N.
Chernov
and
R.
Markarian
, “
Dispersing billiards with cusps: slow decay of correlations
,”
Commun. Math. Phys.
270
,
727
758
(
2007
).
22.
P.
Bálint
,
N.
Chernov
, and
D.
Dolgopyat
, “
Limit theorems for dispersing billiards with cusps
,”
Commun. Math. Phys.
308
,
479
510
(
2011
).
23.
P.
Bálint
and
I.
Melbourne
, “
Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows
,”
J. Stat. Phys.
133
,
435
447
(
2008
).
24.
D. V.
Anosov
and
A. B.
Katok
, “
New examples in smooth ergodic theory, Ergodic Diffeomorphisms
,”
Trudy Mosk. Math. Obs.
23
,
3–36
(
1970
), English version in Trans. Mosc. Math. Soc., AMS 23, 1–35 (1972).
25.
C.
Siegel
and
J.
Moser
,
Lectures on Celestial Mechanics
, Reprint of the 1971 Edition (
Springer Science & Business Media
,
2012
).
26.
S.
Kamphorst
and
S.
Pinto-de Carvalho
, “
The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards
,”
Exp. Math.
14
,
299
306
(
2005
).
27.
M.
Carneiro
,
S.
Kamphorst
, and
S.
De Carvalho
, “
Elliptic islands in strictly convex billiards
,”
Ergodic Theory Dyn. Syst.
23
,
799
812
(
2003
).
28.
V.
Donnay
, “
Elliptic islands in generalized Sinai billiards
,”
Ergodic Theory Dyn. Syst.
16
,
975
1010
(
1996
).
29.
D.
Turaev
and
V.
Rom-Kedar
, “
Elliptic islands appearing in near-ergodic flows
,”
Nonlinearity
11
,
575
(
1998
).
30.
V.
Rom-Kedar
and
D.
Turaev
, “
Big islands in dispersing billiard-like potentials
,”
Physica D
130
,
187
210
(
1999
).
31.
J.
Moser
,
Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics
(
Princeton University Press
,
2001
), Vol. 1.
32.
M.
Berry
, “
Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard’
,”
Eur. J. Phys.
2
,
91
(
1981
).
33.
A.
Grigo
, “
Billiards and statistical mechanics
,” Ph.D. thesis (
Citeseer
,
2009
).
You do not currently have access to this content.