A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

1.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
2.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
3.
A. A.
Tsonis
and
P. J.
Roebber
, “
The architecture of the climate network
,”
Physica A
333
,
497
504
(
2004
).
4.
A. A.
Tsonis
,
K. L.
Swanson
, and
P. J.
Roebber
, “
What do networks have to do with climate?
,”
B. Am. Meteorol. Soc.
87
,
585
(
2006
).
5.
K.
Yamasaki
,
A.
Gozolchiani
, and
S.
Havlin
, “
Climate networks around the globe are significantly affected by El Nino
,”
Phys. Rev. Lett.
100
,
228501
(
2008
).
6.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
Complex networks in climate dynamics
,”
Eur. Phys. J.–Spec. Top.
174
,
157
179
(
2009
).
7.
M.
Vejmelka
,
L.
Pokorná
,
J.
Hlinka
,
D.
Hartman
,
N.
Jajcay
, and
M.
Paluš
, “
Non-random correlation structures and dimensionality reduction in multivariate climate data
,”
Clim. Dyn.
44
,
2663
2682
(
2015
).
8.
A. G.
Barnston
and
R. E.
Livezey
, “
Classification, seasonality and persistence of low-frequency atmospheric circulation patterns
,”
Mon. Weather Rev.
115
,
1083
1126
(
1987
).
9.
S. B.
Feldstein
, “
The timescale, power spectra, and climate noise properties of teleconnection patterns
,”
J. Climate
13
,
4430
4440
(
2000
).
10.
J.
Hlinka
,
D.
Hartman
,
M.
Vejmelka
,
D.
Novotná
, and
M.
Paluš
, “
Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity
,”
Clim. Dyn.
42
,
1873
1886
(
2014
).
11.
A.
Gozolchiani
,
S.
Havlin
, and
K.
Yamasaki
, “
Emergence of El Niño as an autonomous component in the climate network
,”
Phys. Rev. Lett.
107
,
148501
(
2011
).
12.
J.
Ludescher
,
A.
Gozolchiani
,
M. I.
Bogachev
,
A.
Bunde
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Improved El Niño forecasting by cooperativity detection
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
11742
11745
(
2013
).
13.
D.
Zhou
,
A.
Gozolchiani
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Teleconnection paths via climate network direct link detection
,”
Phys. Rev. Lett.
115
,
268501
(
2015
).
14.
C. W.
Granger
, “
Investigating causal relations by econometric models and cross-spectral methods
,”
Econometrica
37
,
424
438
(
1969
).
15.
G.
Tirabassi
,
C.
Masoller
, and
M.
Barreiro
, “
A study of the air–sea interaction in the South Atlantic convergence zone through Granger causality
,”
Int. J. Climatol.
35
,
3440
3453
(
2015
).
16.
J. I.
Deza
,
M.
Barreiro
, and
C.
Masoller
, “
Assessing the direction of climate interactions by means of complex networks and information theoretic tools
,”
Chaos
25
,
033105
(
2015
).
17.
I.
Ebert-Uphoff
and
Y.
Deng
, “
Causal discovery for climate research using graphical models
,”
J. Climate
25
,
5648
5665
(
2012
).
18.
I.
Ebert-Uphoff
and
Y.
Deng
, “
A new type of climate network based on probabilistic graphical models: Results of boreal winter versus summer
,”
Geophys. Res. Lett.
39
, doi: (
2012
).
19.
J.
Runge
,
V.
Petoukhov
,
J. F.
Donges
,
J.
Hlinka
,
N.
Jajcay
,
M.
Vejmelka
,
D.
Hartman
,
N.
Marwan
,
M.
Paluš
, and
J.
Kurths
, “
Identifying causal gateways and mediators in complex spatio-temporal systems
,”
Nat. Commun.
6
,
8502
(
2015
).
20.
J.
Runge
,
J.
Heitzig
,
V.
Petoukhov
, and
J.
Kurths
, “
Escaping the curse of dimensionality in estimating multivariate transfer entropy
,”
Phys. Rev. Lett.
108
,
258701
(
2012
).
21.
J.
Hlinka
,
D.
Hartman
,
M.
Vejmelka
,
J.
Runge
,
N.
Marwan
,
J.
Kurths
, and
M.
Paluš
, “
Reliability of inference of directed climate networks using conditional mutual information
,”
Entropy
15
,
2023
2045
(
2013
).
22.
E.
Kalnay
,
M.
Kanamitsu
,
R.
Kistler
,
W.
Collins
,
D.
Deaven
,
L.
Gandin
,
M.
Iredell
,
S.
Saha
,
G.
White
,
J.
Woollen
 et al, “
The NCEP/NCAR 40-year reanalysis project
,”
B. Am. Meteorol. Soc.
77
,
437
471
(
1996
).
23.
R.
Heikes
and
D. A.
Randall
, “
Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests
,”
Mon. Weather Rev.
123
,
1862
1880
(
1995
).
24.
A.
Radebach
,
R. V.
Donner
,
J.
Runge
,
J. F.
Donges
, and
J.
Kurths
, “
Disentangling different types of El Niño episodes by evolving climate network analysis
,”
Phys. Rev. E
88
,
052807
(
2013
).
25.
M.
Paluš
,
V.
Komárek
,
Z.
Hrnčíř
, and
K.
Štěrbová
, “
Synchronization as adjustment of information rates: detection from bivariate time series
,”
Phys. Rev. E
63
,
046211
(
2001
).
26.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
,
461
(
2000
).
27.
M.
Paluš
and
M.
Vejmelka
, “
Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections
,”
Phys. Rev. E
75
,
056211
(
2007
).
28.
L.
Barnett
,
A. B.
Barrett
, and
A. K.
Seth
, “
Granger causality and transfer entropy are equivalent for Gaussian variables
,”
Phys. Rev. Lett.
103
,
238701
(
2009
).
29.
M.
Prokopenko
and
J. T.
Lizier
, “
Transfer entropy and transient limits of computation
,”
Sci. Rep.
4
,
5394
(
2014
).
30.
W.
Ebeling
and
R.
Feistel
, “
Selforganization of symbols and information
,” in
Chaos, Information Processing and Paradoxical Games: The Legacy of John S Nicolis
, edited by
G.
Nicolis
and
V.
Basios
(
World Scientific Publishing Co. Pte. Ltd.
,
2014
), pp.
141
184
.
31.
M.
Paluš
, “
Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature
,”
Phys. Rev. Lett.
112
,
078702
(
2014
).
32.
N.
Jajcay
,
J.
Hlinka
,
S.
Kravtsov
,
A. A.
Tsonis
, and
M.
Paluš
, “
Time scales of the European surface air temperature variability: The role of the 7–8 year cycle
,”
Geophys. Res. Lett.
43
,
902
909
, doi: (
2016
).
You do not currently have access to this content.