Dynamical systems often exhibit the emergence of long-lived coherent sets, which are regions in state space that keep their geometric integrity to a high extent and thus play an important role in transport. In this article, we provide a method for extracting coherent sets from possibly sparse Lagrangian trajectory data. Our method can be seen as an extension of diffusion maps to trajectory space, and it allows us to construct “dynamical coordinates,” which reveal the intrinsic low-dimensional organization of the data with respect to transport. The only a priori knowledge about the dynamics that we require is a locally valid notion of distance, which renders our method highly suitable for automated data analysis. We show convergence of our method to the analytic transfer operator framework of coherence in the infinite data limit and illustrate its potential on several two- and three-dimensional examples as well as real world data.

1.
G.
Froyland
,
S.
Lloyd
, and
A.
Quas
, “
Coherent structures and isolated spectrum for Perron–Frobenius cocycles
,”
Ergodic Theory Dyn. Syst.
30
,
729
756
(
2010
).
2.
G.
Froyland
,
S.
Lloyd
, and
N.
Santitissadeekorn
, “
Coherent sets for nonautonomous dynamical systems
,”
Physica D
239
,
1527
1541
(
2010
).
3.
G.
Froyland
,
N.
Santitissadeekorn
, and
A.
Monahan
, “
Transport in time-dependent dynamical systems: Finite-time coherent sets
,”
Chaos
20
,
043116
(
2010
).
4.
I. I.
Rypina
,
M. G.
Brown
,
F. J.
Beron-Vera
,
H.
Koçak
,
M. J.
Olascoaga
, and
I. A.
Udovydchenkov
, “
On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex
,”
J. Atmos. Sci.
64
,
3595
3610
(
2007
).
5.
A.-M.
Treguier
,
O.
Boebel
,
B.
Barnier
, and
G.
Madec
, “
Agulhas eddy fluxes in a 1/6 degrees Atlantic model
,”
Deep Sea Res. Part II
50
,
251
280
(
2003
).
6.
M.
Dellnitz
,
G.
Froyland
,
C.
Horenkamp
,
K.
Padberg-Gehle
, and
A. S.
Gupta
, “
Seasonal variability of the subpolar gyres in the Southern Ocean: A numerical investigation based on transfer operators
,”
Nonlinear Processes Geophys.
16
,
655
664
(
2009
).
7.
G.
Froyland
,
C.
Horenkamp
,
V.
Rossi
, and
E.
van Sebille
, “
Studying an Agulhas ring's long-term pathway and decay with finite-time coherent sets
,”
Chaos
25
,
083119
(
2015
).
8.
K.
Padberg
,
T.
Hauff
,
F.
Jenko
, and
O.
Junge
, “
Lagrangian structures and transport in turbulent magnetized plasmas
,”
New J. Phys.
9
,
400
(
2007
).
9.
M. R.
Allshouse
and
J.-L.
Thiffeault
, “
Detecting coherent structures using braids
,”
Physica D
241
,
95
105
(
2012
).
10.
M.
Budišić
and
I.
Mezić
, “
Geometry of the ergodic quotient reveals coherent structures in flows
,”
Physica D
241
,
1255
1269
(
2012
).
11.
V.
Rom-Kedar
and
S.
Wiggins
, “
Transport in two-dimensional maps
,”
Arch. Ration. Mech. Anal.
109
,
239
298
(
1990
).
12.
G.
Haller
, “
Finding finite-time invariant manifolds in two-dimensional velocity fields
,”
Chaos
10
,
99
108
(
2000
).
13.
G.
Haller
and
F. J.
Beron-Vera
, “
Geodesic theory of transport barriers in two-dimensional flows
,”
Physica D
241
,
1680
1702
(
2012
).
14.
G.
Haller
, “
Distinguished material surfaces and coherent structures in three-dimensional fluid flows
,”
Physica D
149
,
248
277
(
2001
).
15.
T.
Ma
and
E. M.
Bollt
, “
Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting
,”
SIAM J. Appl. Dyn. Syst.
13
,
1106
1136
(
2014
).
16.
S.
Balasuriya
,
G.
Froyland
, and
N.
Santitissadeekorn
, “
Absolute flux optimising curves of flows on a surface
,”
J. Math. Anal. Appl.
409
,
119
139
(
2014
).
17.
M.
Dellnitz
and
O.
Junge
, “
On the approximation of complicated dynamical behavior
,”
SIAM J. Numer. Anal.
36
,
491
515
(
1999
).
18.
G.
Froyland
and
M.
Dellnitz
, “
Detecting and locating near-optimal almost-invariant sets and cycles
,”
SIAM J. Sci. Comput.
24
,
1839
1863
(
2003
).
19.
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifolds - Connecting probabilistic and geometric descriptions of coherent structures in flows
,”
Physica D
238
,
1507
1523
(
2009
).
20.
G.
Froyland
and
K.
Padberg-Gehle
, “
Finite-time entropy: A probabilistic approach for measuring nonlinear stretching
,”
Physica D
241
,
1612
1628
(
2012
).
21.
G.
Froyland
, “
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
,”
Nonlinearity
28
,
3587
3622
(
2015
).
22.
M. R.
Allshouse
and
T.
Peacock
, “
Lagrangian based methods for coherent structure detection
,”
Chaos
25
,
097617
(
2015
).
23.
E.
Ser-Giacomi
,
V.
Rossi
,
C.
López
, and
E.
Hernández-García
, “
Flow networks: A characterization of geophysical fluid transport
,”
Chaos
25
,
036404
(
2015
).
24.
G.
Froyland
and
K.
Padberg-Gehle
, “
A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data
,”
Chaos
25
,
087406
(
2015
).
25.
A.
Hadjighasem
,
D.
Karrasch
,
H.
Teramoto
, and
G.
Haller
, “
A spectral clustering approach to Lagrangian vortex detection
,” preprint arXiv:1506.02258 (
2015
).
26.
M. O.
Williams
,
I. I.
Rypina
, and
C. W.
Rowley
, “
Identifying finite-time coherent sets from limited quantities of Lagrangian data
,”
Chaos
25
,
087408
(
2015
).
27.
G.
Froyland
, “
An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems
,”
Physica D
250
,
1
19
(
2013
).
28.
R. R.
Coifman
and
S.
Lafon
, “
Diffusion maps
,”
Appl. Comput. Harmonic Anal.
21
,
5
30
(
2006
).
29.
B.
Nadler
,
S.
Lafon
,
R. R.
Coifman
, and
I. G.
Kevrekidis
, “
Diffusion maps, spectral clustering and reaction coordinates of dynamical systems
,”
Appl. Comput. Harmonic Anal.
21
,
113
127
(
2006
).
30.
S.
Lafon
and
A. B.
Lee
, “
Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization
,”
IEEE Trans. Pattern Anal. Mach. Intell.
28
,
1393
1403
(
2006
).
31.
U.
Von Luxburg
, “
A tutorial on spectral clustering
,”
Stat. Comput.
17
,
395
416
(
2007
).
32.
R.
Lambiotte
,
J. C.
Delvenne
, and
M.
Barahona
, “
Random walks, Markov processes and the multiscale modular organization of complex networks
,”
IEEE Trans. Network Sci. Eng.
1
(
2
),
76
90
(
2014
).
33.
A.
Lasota
and
M. C.
Mackey
,
Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics
(
Springer
,
1994
), Vol. 97.
34.
G.
Froyland
and
K.
Padberg-Gehle
, “
Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion
,” in
Ergodic Theory, Open Dynamics, and Coherent Structures
(
Springer
,
2014
), pp.
171
216
.
35.
M.
Hein
,
J.-Y.
Audibert
, and
U.
von Luxburg
, “
From graphs to manifolds – weak and strong pointwise consistency of graph Laplacians
,” in
Proceedings of the 18th Annual Conference on Learning Theory, COLT'05
(
Springer-Verlag
,
Berlin, Heidelberg
,
2005
), pp.
470
485
.
36.
A.
Singer
, “
From graph to manifold Laplacian: The convergence rate
,”
Appl. Comput. Harmonic Anal.
21
,
128
134
(
2006
).
37.
A.
Denner
,
O.
Junge
, and
D.
Matthes
, “
Computing coherent sets using the Fokker–Planck equation
,” preprint arXiv:1512.03761 (
2015
).
38.
C.
Schütte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
, “
A direct approach to conformational dynamics based on hybrid Monte Carlo
,”
J. Comput. Phys.
151
,
146
168
(
1999
).
39.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
, “
Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains
,”
Linear Algebra Appl.
315
,
39
59
(
2000
).
40.
S. E.
Schaeffer
, “
Graph clustering
,”
Comput. Sci. Rev.
1
,
27
64
(
2007
).
41.
J.
Shi
and
J.
Malik
, “
Normalized cuts and image segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
22
,
888
905
(
2000
).
42.
A. Y.
Ng
,
M. I.
Jordan
,
Y.
Weiss
 et al, “
On spectral clustering: Analysis and an algorithm
,”
Advances in Neural Information Processing Systems 14
, edited by
T. G.
Dietterich
,
S.
Becker
, and
Z.
Ghahramani
(
MIT Press
,
2002
), pp.
849
856
, available at http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf.
43.
P.
Deuflhard
and
M.
Weber
, “
Robust Perron cluster analysis in conformation dynamics
,”
Linear Algebra Appl.
398
,
161
184
(
2005
).
44.
J. C.
Bezdek
,
Pattern Recognition with Fuzzy Objective Function Algorithms
(
Springer Science & Business Media
,
2013
).
45.
M.
Sarich
,
N.
Djurdjevac
,
S.
Bruckner
,
T. O.
Conrad
, and
C.
Schütte
, “
Modularity revisited: A novel dynamics-based concept for decomposing complex networks
,”
J. Comput. Dyn.
1
,
191
212
(
2014
).
46.
S.
Arya
,
D. M.
Mount
,
N. S.
Netanyahu
,
R.
Silverman
, and
A. Y.
Wu
, “
An optimal algorithm for approximate nearest neighbor searching in fixed dimensions
,”
JACM
45
(
6
),
891
923
(
1998
).
47.
A.
Buluç
and
J. R.
Gilbert
, “
Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments
,”
SIAM J. Sci. Comput.
34
,
C170
C191
(
2012
).
48.
W.-Y.
Chen
,
Y.
Song
,
H.
Bai
,
C.-J.
Lin
, and
E. Y.
Chang
, “
Parallel spectral clustering in distributed systems
,”
IEEE Trans. Pattern Anal. Mach. Intell.
33
,
568
586
(
2011
).
49.
S.
Klus
,
P.
Koltai
, and
C.
Schütte
, “
On the numerical approximation of the Perron–Frobenius and Koopman operator
,”
J. Comput. Dyn.
3
(
1
),
51
79
(
2016
).
50.
B.
Chen
,
B.
Gao
,
T.-Y.
Liu
,
Y.-F.
Chen
, and
W.-Y.
Ma
, “
Fast spectral clustering of data using sequential matrix compression
,”
Machine Learning: ECML 2006
(
Springer
,
2006
), pp.
590
597
.
51.
C.
Fowlkes
,
S.
Belongie
,
F.
Chung
, and
J.
Malik
, “
Spectral grouping using the Nystrom method
,”
IEEE Trans. Pattern Anal. Mach. Intell.
26
,
214
225
(
2004
).
52.
T.-Y.
Liu
,
H.-Y.
Yang
,
X.
Zheng
,
T.
Qin
, and
W.-Y.
Ma
,
Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization
(
Springer
,
2007
).
53.
C.
Schütte
and
M.
Sarich
,
Metastability and Markov State Models in Molecular Dynamics
, Courant Lecture Notes in Mathematics (
American Mathematical Soc.
,
2013
).
54.
G.
Froyland
and
P.
Koltai
, “
Estimating long-term behavior of periodically driven flows without trajectory integration
,” preprint arXiv:1511.07272 (
2015
).
55.
V. I.
Arnol'd
, “
On the topology of three-dimensional steady flows of an ideal fluid
,”
J. Appl. Math. Mech.
30
,
223
226
(
1966
).
56.
T.
Dombre
,
U.
Frisch
,
J. M.
Greene
,
M.
Hénon
,
A.
Mehr
, and
A. M.
Soward
, “
Chaotic streamlines in the ABC flows
,”
J. Fluid Mech.
167
,
353
(
1986
).
57.
D.
Blazevski
and
G.
Haller
, “
Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows
,”
Physica D
273
,
46
62
(
2014
).

Supplementary Material

You do not currently have access to this content.