In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

1.
E. N.
Lorenz
, “
Deterministic non-periodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
G.
Chen
and
X.
Yu
,
Chaos Control: Theory and Applications
(
Springer
,
Berlin
,
2003
).
3.
C. X.
Zhang
and
S. M.
Yu
, “
Generation of grid multi-scroll chaotic attractors via switching piecewise linear controller
,”
Phys. Lett. A
374
,
3029
3037
(
2010
).
4.
Y.
Lin
,
C. H.
Wang
, and
L.
Zhou
, “
Generation and implementation of grid multiscroll hyperchaotic attractors using CCII+
,”
Optik
127
(
5
),
2902
2906
(
2015
).
5.
S. M.
Yu
,
J. H.
,
G. R.
Chen
, and
X. H.
Yu
, “
Design and implementation of grid multiwing butterfly chaotic attractors from a piecewise Lorenz system
,”
IEEE Trans. Circuits Syst. II
57
(
10
),
803
807
(
2010
).
6.
W. H.
Deng
and
J. H.
, “
Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system
,”
Phys. Lett. A
369
,
438
443
(
2007
).
7.
L. O.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
8.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
(
7191
),
80
83
(
2008
).
9.
M.
Itoh
and
L. O.
Chua
, “
Memristor oscillators
,”
Int. J. Bifurcation Chaos
18
(
11
),
3183
3206
(
2008
).
10.
B.
Muthuswamy
and
P. P.
Kokate
, “
Memristor-based chaotic circuits
,”
IETE Tech. Rev.
26
(
6
),
417
429
(
2014
).
11.
B. C.
Bao
,
J. P.
Xu
, and
Z.
Liu
, “
Initial state dependent dynamical behaviors in a memristor based chaotic circuit
,”
Chin. Phys. Lett.
27
(
7
),
51
53
(
2010
).
12.
H. H. C.
Iu
 et al., “
Controlling chaos in a memristor based circuit using a Twin-T notch filter
,”
IEEE Trans. Circuits Syst. I
58
(
6
),
1337
1344
(
2011
).
13.
B.
Muthuswamy
, “
Implementing memristor based chaotic circuits
,”
Int. J. Bifurcation Chaos
20
(
5
),
1335
1350
(
2010
).
14.
R. P.
Wu
and
C. H.
Wang
, “
A new simple chaotic circuit based on memristor
,”
Int. J. Bifurcation Chaos
26
(
9
),
1650145
(
2016
).
15.
Q.
Xu
,
Y.
Lin
, and
B. C.
Bao
, “
Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit
,”
Chaos, Solitons Fractals
83
,
186
200
(
2016
).
16.
L.
Teng
,
H. H. C.
Iu
 et al., “
Novel chaotic behavior in the Muthuswamy-Chua system using Chebyshev polynomials
,”
Int. J. Numer. Model. Electron. Networks Devices Fields
28
(
3
),
275
286
(
2014
).
17.
S. J.
Cang
,
A. G.
Wu
,
Z. L.
Wang
,
Z. H.
Wang
, and
Z. Q.
Chen
, “
A general method for exploring three-dimensional chaotic attractors with complicated topological structure based on the two-dimensional local vector field around equilibriums
,”
Nonlinear Dyn.
83
,
1069
(
2015
).
18.
F.
Corinto
and
A.
Ascoli
, “
Memristive diode bridge with LCR filter
,”
Electron. Lett.
48
(
14
),
824
825
(
2012
).
19.
B. C.
Bao
,
J. J.
Yu
,
F. W.
Hu
, and
Z.
Liu
, “
Generalized memristor consisting of diode bridge with first order parallel RC filter
,”
Int. J. Bifurcation Chaos
24
(
11
),
1450143
(
2014
).
20.
F.
Corinto
,
A.
Ascoli
, and
M.
Gilli
, “
Nonlinear dynamics of memristor oscillators
,”
IEEE Trans. Circuits Syst. I
58
(
6
),
1323
1336
(
2011
).
21.
B.
Muthuswamy
and
L. O.
Chua
, “
Simplest chaotic circuit
,”
Int. J. Bifurcation Chaos
20
(
5
),
1567
1580
(
2010
).
22.
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
, and
L. V.
Gambuzza
, “
A chaotic circuit based on Hewlett–Packard memristor
,”
Chaos
22
,
023136
(
2012
).
23.
A. L.
Fitch
 et al., “
Hyperchaos in a memristor-based modified canonical Chua's circuit
,”
Int. J. Bifurcation Chaos
22
(
6
),
1250133
(
2012
).
24.
I.
Petráš
, “
Fractional-order memristor-based Chua's circuit
,”
IEEE Trans. Circuits Syst. II
57
(
12
),
975
979
(
2010
).
25.
L. V.
Gambuzza
 et al., “
Experimental evidence of chaos from memristors
,”
Int. J. Bifurcation Chaos
25
(
8
),
1550101
(
2015
).
26.
H. F.
Li
,
L. D.
Wang
, and
S. K.
Duan
, “
A memristor-based scroll chaotic system—Design, analysis and circuit implementation
,”
Int. J. Bifurcation Chaos
24
,
1450099
(
2014
).
27.
B. C.
Bao
 et al., “
Hidden extreme multistability in memristive hyperchaotic system
,”
Chaos, Solitons Fractals
94
,
102
111
(
2017
).
28.
F.
Yuan
,
G. Y.
Wang
, and
X. W.
Wang
, “
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system
,”
Chaos
26
,
073107
(
2016
).
29.
H.
Richter
, “
On a family of maps with multiple chaotic attractors
,”
Chaos, Solitons Fractals
36
(
3
),
559
571
(
2008
).
30.
J.
Kengne
,
Z. N.
Tabekoueng
,
V. K.
Tamba
, and
A. N.
Negou
, “
Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit
,”
Chaos
25
,
103126
(
2015
).
31.
B. C.
Bao
 et al., “
Coexisting infinitely many attractors in active band-pass filter-based memristive circuit
,”
Nonlinear Dyn.
86
(
3
),
1711
1723
(
2016
).
32.
L. O.
Chua
, “
Resistance switching memories are memristor
,”
Appl. Phys. A
102
,
765
783
(
2011
).
33.
S. P.
Adhikari
,
M. P.
Sah
,
H.
Kim
, and
L. O.
Chua
, “
Three fingerprints of memristor
,”
IEEE Trans. Circuits Syst. I
60
,
3008
3021
(
2013
).
34.
A.
Wolf
,
J.
Swift
,
H.
Swinney
, and
J.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
(
3
),
285
317
(
1985
).
35.
H.
Kantz
, “
A robust method to estimate the maximal Lyapunov exponent of a time series
,”
Phys. Lett. A
185
(
1
),
77
87
(
1994
).
You do not currently have access to this content.