A classical chemostat model is considered that models the cycling of one essential abiotic element or nutrient through a food chain of three trophic levels. The long-time behavior of the model was known to exhibit complex dynamics more than 20 years ago. It is still an open problem to prove the existence of chaos analytically. In this paper, we aim to solve the problem numerically. In our approach, we introduce an artificial singular parameter to the model and construct singular homoclinic orbits of the saddle-focus type which is known for chaos generation. From the configuration of the nullclines of the equations that generates the singular homoclinic orbits, a shooting algorithm is devised to find such Shilnikov saddle-focus homoclinic orbits numerically which in turn imply the existence of chaotic dynamics for the original chemostat model.

1.
J.
Monod
, “
The growth of bacterial cultures
,”
Annu. Rev. Microbiol.
3
(
1
),
371
394
(
1949
).
2.
A.
Novick
and
L.
Szilard
, “
Experiments with the chemostat on spontaneous mutations of bacteria
,”
Proc. Natl. Acad. Sci.
36
(
12
),
708
719
(
1950
).
3.
S.-B.
Hsu
,
S.
Hubbell
, and
P.
Waltman
, “
A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms
,”
SIAM J. Appl. Math.
32
(
2
),
366
383
(
1977
).
4.
H. L.
Smith
and
P.
Waltman
,
The Theory of the Chemostat: Dynamics of Microbial Competition
(
Cambridge University Press
,
1995
), Vol.
13
.
5.
G.
Butler
,
S.
Hsu
, and
P.
Waltman
, “
Coexistence of competing predators in a chemostat
,”
J. Math. Biol.
17
(
2
),
133
151
(
1983
).
6.
K.-S.
Cheng
, “
Uniqueness of a limit cycle for a predator-prey system
,”
SIAM J. Math. Anal.
12
(
4
),
541
548
(
1981
).
7.
Y.
Kuang
,
Limit Cycles in Gause-Type Predator-Prey Systems
(
University of Alberta
,
1988
).
8.
S.
Hsu
,
S.
Hubbell
, and
P.
Waltman
, “
Competing predators
,”
SIAM J. Appl. Math.
35
(
4
),
617
625
(
1978
).
9.
S.
Hsu
,
S.
Hubbell
, and
P.
Waltman
, “
A contribution to the theory of competing predators
,”
Ecol. Monogr.
48
(
3
),
337
349
(
1978
).
10.
W.
Liu
,
D.
Xiao
, and
Y.
Yi
, “
Relaxation oscillations in a class of predator–prey systems
,”
J. Differ. Equations
188
(
1
),
306
331
(
2003
).
11.
A.
Hastings
and
T.
Powell
, “
Chaos in a three-species food chain
,”
Ecology
72
(
3
),
896
903
(
1991
).
12.
P.
Hogeweg
and
B.
Hesper
, “
Interactive instruction on population interactions
,”
Comput. Biol. Med.
8
(
4
),
319
327
(
1978
).
13.
B.
Deng
, “
Food chain chaos due to junction-fold point
,”
Chaos
11
(
3
),
514
525
(
2001
).
14.
B.
Deng
and
G.
Hines
, “
Food chain chaos due to Shilnikov's orbit
,”
Chaos
12
(
3
),
533
538
(
2002
).
15.
B.
Deng
and
G.
Hines
, “
Food chain chaos due to transcritical point
,”
Chaos
13
(
2
),
578
585
(
2003
).
16.
S.
Smale
, “
On the differential equations of species in competition
,”
J. Math. Biol.
3
(
1
)
5
7
(
1976
).
17.
A. J.
Lotka
, “
Elements of physical biology
,”
Sci. Prog.
21
(
82
),
341
343
(
1926
).
18.
A.
Lotka
, “
Fluctuations in the abundance of species considered mathematically (with comment by V. Volterra)
,”
Nature
119
,
12
13
(
1927
).
19.
V.
Volterra
, “
Fluctuations in the abundance of a species considered mathematically
,”
Nature
118
,
558
560
(
1926
).
20.
S.
Smale
, “
Diffeomorphisms with many periodic
,” in
Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse
(
Princeton University Press
,
1965
), Vol.
27
, p.
63
.
21.
M. L.
Cartwright
and
J. E.
Littlewood
, “
On non-linear differential equations of the second order: I. the equation ÿ − k(1 − y2) ẏ + y = bλk cos(λl+α), k large
,”
J. London Math. Soc.
s1-20
(
3
),
180
189
(
1945
).
22.
N.
Levinson
, “
A second order differential equation with singular solutions
,”
Ann. Math.
50
,
127
153
(
1949
).
23.
P.
Yu
,
M.
Han
, and
D.
Xiao
, “
Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka–Volterra systems
,”
J. Math. Anal. Appl.
436
(
1
),
521
555
(
2016
).
24.
B.
Deng
, “
Food chain chaos with canard explosion
,”
Chaos
14
(
4
),
1083
1092
(
2004
).
25.
B.
Deng
and
I.
Loladze
, “
Competitive coexistence in stoichiometric chaos
,”
Chaos
17
(
3
),
033108
(
2007
).
26.
M. E.
Gilpin
, “
Spiral chaos in a predator-prey model
,”
Am. Nat.
113
(
2
),
306
308
(
1979
).
27.
K.
Mccann
and
P.
Yodzis
, “
Bifurcation structure of a three-species food-chain model
,”
Theor. Popul. Biol.
48
(
2
),
93
125
(
1995
).
28.
B.
Bockelman
and
B.
Deng
, “
Food web chaos without subchain oscillators
,”
Int. J. Bifurcation Chaos
15
(
11
),
3481
3492
(
2005
).
29.
S.
Muratori
and
S.
Rinaldi
, “
Low-and high-frequency oscillations in three-dimensional food chain systems
,”
SIAM J. Appl. Math.
52
(
6
),
1688
1706
(
1992
).
30.
L.
Shilnikov
, “
The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus
,”
Sov. Math. Dokl.
8
,
54
58
(
1967
).
31.
L.
Šil'nikov
, “
A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type
,”
Math. USSR-Sb.
10
(
1
),
91
(
1970
).
32.
C.
Tresser
, “
About some theorems by LP Šil'nikov
,”
Ann. I.H.P. Phys. Théor.
40
,
441
461
(
1984
).
33.
B.
Deng
, “
On Šil'nikov's homoclinic-saddle-focus theorem
,”
J. Differ. Equations
102
(
2
),
305
329
(
1993
).
34.
B.
Deng
, “
Exponential expansion with principal eigenvalues
,”
Int. J. Bifurcation Chaos
6
(
6
),
1161
1167
(
1996
).
35.
B.
Deng
, “
Constructing homoclinic orbits and chaotic attractors
,”
Int. J. Bifurcation Chaos
4
(
4
),
823
841
(
1994
).
36.
B.
Deng
, “
Constructing Lorenz type attractors through singular perturbations
,”
Int. J. Bifurcation Chaos
5
(
6
),
1633
1642
(
1995
).
37.
C. S.
Holling
, “
Some characteristics of simple types of predation and parasitism
,”
Can. Entomol.
91
(
7
),
385
398
(
1959
).
You do not currently have access to this content.