In this work, we provide three different numerical evidences for the occurrence of a Hopf bifurcation in a recently derived [De Masi et al., J. Stat. Phys. 158, 866–902 (2015) and Fournier and löcherbach, Ann. Inst. H. Poincaré Probab. Stat. 52, 1844–1876 (2016)] mean field limit of a stochastic network of excitatory spiking neurons. The mean field limit is a challenging nonlocal nonlinear transport equation with boundary conditions. The first evidence relies on the computation of the spectrum of the linearized equation. The second stems from the simulation of the full mean field. Finally, the last evidence comes from the simulation of the network for a large number of neurons. We provide a “recipe” to find such bifurcation which nicely complements the works in De Masi et al. [J. Stat. Phys. 158, 866–902 (2015)] and Fournier and löcherbach [Ann. Inst. H. Poincaré Probab. Stat. 52, 1844–1876 (2016)]. This suggests in return to revisit theoretically these mean field equations from a dynamical point of view. Finally, this work shows how the noise level impacts the transition from asynchronous activity to partial synchronization in excitatory globally pulse-coupled networks.

1.
A. D.
De Masi
,
A.
Galves
,
E.
Lcherbach
, and
E.
Presutti
, “
Hydrodynamic limit for interacting neurons
,”
J. Stat. Phys.
158
,
866
902
(
2015
).
2.
N.
Fournier
and
E.
Lcherbach
, “
On a toy model of interacting neurons
,”
Ann. Inst. H. Poincaré Probab. Stat.
52
,
1844
1876
(
2016
).
3.
O.
Faugeras
,
J.
Touboul
, and
B.
Cessac
, “
A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs
,”
Front. Comput. Neurosci.
3
(
2009
).
4.
W.
Gerstner
,
W. M.
Kistler
,
R.
Naud
, and
L.
Paninski
,
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
(
Cambridge University Press
,
Cambridge, United Kingdom
,
2014
).
5.
P.
Robert
and
J.
Touboul
, “
On the dynamics of random neuronal networks
,”
J. Stat. Phys.
165
,
545
584
(
2016
).
6.
M. E.
Gurtin
and
R. C.
MacCamy
, “
Non-linear age-dependent population dynamics
,”
Arch. Ration. Mech. Anal.
54
,
281
300
(
1974
).
7.
P.
Magal
and
S.
Ruan
,
Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications to Hopf Bifurcation in Age Structured Models
, Memoirs of the American Mathematical Society Vol. 951 (
American Mathematical Society
,
Providence, RI
,
2009
).
8.
A.
Drogoul
and
R.
Veltz
, “
Exponential stability of stationary distributions for some nonlocal transport equations: Application to neural dynamic
,”
Report löcherbach
, INRIA Sophia Antipolis - Méditerranée,
2016
.
9.
M. H.
Davis
, “
Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models
,”
J. R. Stat. Soc., Ser. B (Methodological)
46
,
353
388
(
1984
).
10.

i.e., when ni transitions to ni+1.

11.

Actually, the mean field equations were derived in the case α=J=1 in 1 and 2 but extending the derivation of the equations to the case α>0,J>0 is straightforward.

12.

e.g., for the rate function f: f is convex increasing, f(0)=0, f(v)>0 for all v>0, limf= and fC2(+). Further assume that supv1f(v)f(v)+f(v)f(v)<.

13.

Meaning that g0 and 0g=1.

14.
A.
Duarte
and
G.
Ost
, “
A model for neural activity in the absence of external stimuli
,” e-print arXiv:1410.6086.
15.
R.
Mirollo
and
S.
Strogatz
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
,
1645
1662
(
1990
).
16.
L. F.
Abbott
and
C.
van Vreeswijk
, “
Asynchronous states in networks of pulse-coupled oscillators
,”
Phys. Rev. E
48
,
1483
1490
(
1993
).
17.
C.
van Vreeswijk
, “
Partial synchronization in populations of pulse-coupled oscillators
,”
Phys. Rev. E
54
,
5522
(
1996
).
18.
K. A.
Takeuchi
,
H.
Chat
,
F.
Ginelli
,
A.
Politi
, and
A.
Torcini
, “
Extensive and subextensive chaos in globally coupled dynamical systems
,”
Phys. Rev. Lett.
107
,
124101
(
2011
).
19.
P. C.
Bressloff
, “
Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses
,”
Phys. Rev. E
60
,
2160
(
1999
).
20.
F.
Farkhooi
and
C.
van Vreeswijk
, “
Renewal approach to the analysis of the asynchronous state for coupled noisy oscillators
,”
Phys. Rev. Lett.
115
,
038103
(
2015
).
21.

The set for which this inverse exists.

22.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer
,
New York, NY
,
1983
).
23.
M.
Haragus
and
G.
Iooss
,
Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
(
Springer
London, London
,
2011
).
24.
J.
Bezanson
,
A.
Edelman
,
S.
Karpinski
, and
V.
B
. Shah, “
Julia: A fresh approach to numerical computing
,”
SIAM Reviews
59
,
65
98
(
2017
).
25.
S.
Olver
and
A.
Townsend
,
A Practical Framework for Infinite-Dimensional Linear Algebra
(
IEEE
,
2014
), pp.
57
62
.
26.

Equation (2) was simulated using the Euler method with boundary conditions incorporated in the (spatial) finite differences.

27.
R. P.
Boland
,
T.
Galla
, and
A. J.
McKane
, “
How limit cycles and quasi-cycles are related in systems with intrinsic noise
,”
J. Stat. Mech.: Theory Exp.
2008
(9),
P09001
(
2008
).
28.

The network of PDMPs (1) is simulated using a rejection algorithm and the Julia library PDMP.jl.

29.
S.
Luccioli
,
S.
Olmi
,
A.
Politi
, and
A.
Torcini
, “
Collective dynamics in sparse networks
,”
Phys. Rev. Lett.
109
,
138103
(
2012
).
30.
D.
Pazó
and
E.
Montbrió
, “
From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay
,”
Phys. Rev. Lett.
116
,
238101
(
2016
).
You do not currently have access to this content.