The SPEEDO global climate model (an atmosphere model coupled to a land and an ocean/sea-ice model with about 250.000 degrees of freedom) is used to investigate the merits of a new multi-model ensemble approach to the climate prediction problem in a perfect model setting. Two imperfect models are generated by perturbing parameters. Connection terms are introduced that synchronize the two models on a common solution, referred to as the supermodel solution. A synchronization-based learning algorithm is applied to the supermodel through the introduction of an update rule for the connection coefficients. Connection coefficients cease updating when synchronization errors between the supermodel and solutions of the “true” equations vanish. These final connection coefficients define the supermodel. Different supermodel solutions, but with equivalent performance, are found depending on the initial values of the connection coefficients during learning. The supermodels have a climatology and a climate response to a CO2 increase in the atmosphere that is closer to the truth as compared to the imperfect models and the standard multi-model ensemble average, showing the potential of the supermodel approach to improve climate predictions.

1.
L. A.
van den Berge
,
F. M.
Selten
,
W.
Wiegerinck
, and
G. S.
Duane
,
Earth Syst. Dyn.
2
,
161
(
2011
).
2.
G.
Besançon
,
J. D.
León-Morales
, and
O.
Huerta-Guevara
,
Int. J. Control
79
,
581
(
2006
).
3.
H. V. D.
Dool
,
Tellus A
46
,
314
324
(
1994
).
4.
G.
Duane
,
W.
Wiegerinck
,
F.
Selten
,
M.-L.
Shen
, and
N.
Keenlyside
,
Advances in Nonlinear Geosciences
, edited by
A. A.
Tsonis
(
Springer
,
2017
).
5.
G. S.
Duane
,
Entropy
17
,
1701
(
2015
).
6.
G. S.
Duane
,
J. J.
Tribbia
, and
J. B.
Weiss
,
Nonlinear Processes Geophys.
13
,
601
(
2006
).
7.
G. S.
Duane
,
D.
Yu
, and
L.
Kocarev
,
Phys. Lett. A
371
,
416
(
2007
).
8.
H.
Goosse
and
T.
Fichefet
,
J. Geophys. Res.: Oceans
104
,
23337
, (
1999
).
9.
W.
Hazeleger
,
B. J. J. M.
van den Hurk
,
E.
Min
,
G. J.
van Oldenborgh
,
A. C.
Petersen
,
D. A.
Stainforth
,
E.
Vasileiadou
, and
L. A.
Smith
,
Nat. Clim. Change
5
,
107
(
2015
).
10.
P. H.
Hiemstra
,
N.
Fujiwara
,
F. M.
Selten
, and
J.
Kurths
,
Nonlinear Processes Geophys.
19
,
611
(
2012
).
11.
T.
Jung
,
M. J.
Miller
,
T. N.
Palmer
,
P.
Towers
,
N.
Wedi
,
D.
Achuthavarier
,
J. M.
Adams
,
E. L.
Altshuler
,
B. A.
Cash
,
J. L.
Kinter
 III
,
L.
Marx
,
C.
Stan
, and
K. I.
Hodges
,
J. Clim.
25
,
3155
(
2012
).
12.
B. P.
Kirtman
,
D.
Min
,
P. S.
Schopf
, and
E. K.
Schneider
,
Cola Technical Report No. 154
,
2003
, p.
48
.
13.
F.
Lunkeit
,
Chaos
11
,
47
51
(
2001
).
14.
M.
Mirchev
,
G. S.
Duane
,
W. K.
Tang
, and
L.
Kocarev
,
Commun. Nonlinear Sci. Numer. Simul.
17
,
2741
(
2012
).
15.
F.
Molteni
,
Clim. Dyn.
20
,
175
(
2003
).
16.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
64
,
821
(
1990
).
17.
F. J.
Schevenhoven
and
F. M.
Selten
,
Earth Syst. Dyn.
8
,
429
(
2017
).
18.
C. A.
Severijns
and
W.
Hazeleger
,
J. Clim.
18
,
3527
(
2005
).
19.
C. A.
Severijns
and
W.
Hazeleger
,
Geosci. Model Dev.
3
,
105
(
2010
).
20.
M.-L.
Shen
,
N.
Keenlyside
,
F.
Selten
,
W.
Wiegerinck
, and
G. S.
Duane
,
Geophys. Res. Lett.
43
,
359
, (
2016
).
21.
A. P.
Weigel
,
M. A.
Liniger
, and
C.
Appenzeller
,
Q. J. R. Meteorol. Soc.
134
,
241
(
2008
).
22.
W.
Wiegerinck
and
F.
Selten
,
Chaos
27
,
126901
(
2017
).
23.
S.
Yang
,
D.
Baker
,
H.
Li
,
K.
Cordes
,
M.
Huff
,
G.
Nagpal
,
E.
Okereke
,
J.
Villafañe
,
E.
Kalnay
, and
G.
Duane
,
J. Atmos. Sci.
63
,
2340
(
2006
).
24.
W.
Zdunkowski
and
A.
Bott
,
Dynamics of the Atmosphere: A Course in Theoretical Meteorology
(
Cambridge University Press
,
2003
).
25.
Q.
Zhang
,
IEEE Trans. Autom. Control
47
,
525
(
2002
).
You do not currently have access to this content.