Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.

1.
A.
Amann
,
E.
Schöll
, and
W.
Just
,
Phys. A
373
,
191
(
2007
).
2.
D. J.
Amit
and
N.
Brunel
,
Network: Comput. Neural Syst.
8
,
373
(
1997
).
3.
A.
Bahar
and
X.
Mao
,
J. Math. Anal. Appl.
292
,
364
(
2004
).
4.
H. T.
Banks
,
Nonlinear Systems Applications
(
Elsevier
,
1977
), p.
21
.
5.
R.
Bellman
,
Differential-Difference Equations
, Mathematics in Science and Engineering Vol.
6
(
Academic Press
,
New York
,
1963
).
6.
D.
Bratsun
,
D.
Volfson
,
L. S.
Tsimring
, and
J.
Hasty
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
14593
(
2005
).
7.
8.
P.
Chang
,
L.
Ji
,
H.
Li
, and
M.
Flügel
,
Phys. D
98
,
301
(
1996
).
9.
R. M.
Corless
,
G. H.
Gonnet
,
D. E. G.
Hare
,
D. J.
Jeffrey
, and
D. E.
Knuth
,
Adv. Comput. Math.
5
,
329
(
1996
).
10.
B.
Dorizzi
,
B.
Grammaticos
,
M.
Le Berre
,
Y.
Pomeau
,
E.
Ressayre
, and
A.
Tallet
,
Phys. Rev. A
35
,
328
(
1987
).
12.
T.
Erneux
,
Applied Delay Differential Equations
, Surveys and Tutorials in the Applied Mathematical Sciences Vol. 3 (
Springer
,
New York
,
2009
).
13.
14.
T. D.
Frank
and
P. J.
Beek
,
Phys. Rev. E
64
,
021917
(
2001
).
15.
J.
García-Ojalvo
and
R.
Roy
,
Phys. Lett. A
224
,
51
(
1996
).
16.
S.
Guillouzic
,
I.
L'Heureux
, and
A.
Longtin
,
Phys. Rev. E
59
,
3970
(
1999
).
17.
I.
Györi
,
Comput. Math. Appl.
16
,
195
(
1988
).
18.
J. K.
Hale
and
S. M. V.
Lunel
,
Introduction to Functional Differential Equations
, 1st ed., Applied Mathematical Sciences Vol. 99 (
Springer-Verlag
,
New York
,
1993
).
19.
A.
Hutt
and
J.
Lefebvre
,
Markov Processes Relat. Fields
22
(
3
),
555
572
(
2016
).
20.
T.
Insperger
and
G.
Stépán
,
IET Control Theory Appl.
1
,
553
(
2007
).
21.
L.
Jaurigue
,
A.
Pimenov
,
D.
Rachinskii
,
E.
Schöll
,
K.
Lüdge
, and
A. G.
Vladimirov
,
Phys. Rev. A
92
,
053807
(
2015
).
22.
B.
Krasznai
,
I.
Gyori
, and
M.
Pituk
,
Math. Comput. Modell.
51
,
452
(
2010
).
23.
J.
Lefebvre
,
A.
Hutt
,
J.-F.
Knebel
,
K.
Whittingstall
, and
M. M.
Murray
,
J. Neurosci.
35
,
2895
(
2015
).
24.
J.
Lefebvre
,
A.
Hutt
,
V. G.
LeBlanc
, and
A.
Longtin
,
Chaos: An Interdisciplinary J. Nonlinear Sci.
22
,
043121
(
2012
).
25.
J.
Lei
and
M.
Mackey
,
SIAM J. Appl. Math.
67
,
387
(
2007
).
26.
M. C.
Mackey
and
I. G.
Nechaeva
,
J. Dyn. Differ. Equations
6
,
395
(
1994
).
27.
J.
Miȩkisz
,
J.
Poleszczuk
,
M.
Bodnar
, and
U.
Foryś
,
Bull. Math. Biol.
73
,
2231
(
2011
).
28.

In general, C may be decomposed as C=M¯S¯, where M is the space spanned by the generalized eigenfunctions and S is the space of “small solutions,” which reach zero in finite time. In many cases S=0, and thus C is equal to the closure of M. See Ref. 18 (Sec. 3.3).

29.
Since we want to be able to vary the coarseness of the discretization, any singularities arising only for particular values of N are irrelevant.
30.
A.
René
, “
Spectral solution method for distributed delay stochastic differential equations
,” Master's thesis (
Université d'Ottawa/University of Ottawa
,
2016
).
31.
I. M.
Repin
,
J. Appl. Math. Mech.
29
,
254
(
1965
).
32.
H.
Risken
,
The Fokker-Planck Equation: Methods of Solution and Applications
, 2nd ed., Springer Series in Synergetics Vol.
18
(
Springer-Verlag
,
New York
,
1996
).
33.
H.
Smith
,
An Introduction to Delay Differential Equations with Applications to the Life Sciences
, 1st ed., Texts in Applied Mathematics Vol.
57
(
Springer-Verlag
New York
,
2007
).
34.
J.
Touboul
, arXiv:1209.2596.
35.
E. M.
Wright
,
Proc. R. Soc. Edinburgh, Sect. A: Math. Phys. Sci.
65
,
193
(
1959
).
36.
B.
Yang
and
X.
Wu
,
AIAA J.
36
,
2218
(
1998
).
You do not currently have access to this content.