Semiconductor lasers with time-delayed optical feedback display a wide range of dynamical regimes, which have found various practical applications. They also provide excellent testbeds for data analysis tools for characterizing complex signals. Recently, several of us have analyzed experimental intensity time-traces and quantitatively identified the onset of different dynamical regimes, as the laser current increases. Specifically, we identified the onset of low-frequency fluctuations (LFFs), where the laser intensity displays abrupt dropouts, and the onset of coherence collapse (CC), where the intensity fluctuations are highly irregular. Here we map these regimes when both, the laser current and the feedback strength vary. We show that the shape of the distribution of intensity fluctuations (characterized by the standard deviation, the skewness, and the kurtosis) allows to distinguish among noise, LFFs and CC, and to quantitatively determine (in spite of the gradual nature of the transitions) the boundaries of the three regimes. Ordinal analysis of the inter-dropout time intervals consistently identifies the three regimes occurring in the same parameter regions as the analysis of the intensity distribution. Simulations of the well-known time-delayed Lang–Kobayashi model are in good qualitative agreement with the observations.

1.
A.
Uchida
 et al,
Nat. Photonics
2
,
728
732
(
2008
).
2.
S.
Donati
,
Laser Photonics Rev.
6
,
393
417
(
2012
).
3.
S.
Sunada
,
T.
Harayama
,
P.
Davis
 et al,
Chaos
22
,
047513
(
2012
).
4.
D.
Brunner
,
M. C.
Soriano
,
C. R.
Mirasso
, and
I.
Fischer
,
Nat. Commun.
4
,
1364
(
2013
).
5.
M.
Sciamanna
and
K. A.
Shore
,
Nat. Photonics
9
,
151
(
2015
).
6.
D.
Rontani
,
D.
Choi
,
C. Y.
Chang
 et al,
Sci. Rep.
6
,
35206
(
2016
).
7.
8.
V.
Ahlers
,
U.
Parlitz
, and
W.
Lauterborn
,
Phys. Rev. E
58
,
7208
7213
(
1998
).
9.
R.
Vicente
,
J.
Dauden
,
P.
Colet
, and
R.
Toral
,
IEEE J. Quantum Electron.
41
,
541
548
(
2005
).
10.
S.
Yanchuk
and
G.
Giacomelli
,
Phys. Rev. Lett.
112
,
174103
(
2014
).
11.
J.
Tiana-Alsina
,
M. C.
Torrent
,
O. A.
Rosso
,
C.
Masoller
, and
J.
Garcia-Ojalvo
,
Phys. Rev. A
82
,
013819
(
2010
).
12.
M. C.
Soriano
,
L.
Zunino
,
O. A.
Rosso
 et al,
IEEE J. Quantum Electron.
47
,
252
261
(
2011
).
13.
L.
Zunino
,
O. A.
Rosso
, and
M. C.
Soriano
,
IEEE J. Sel. Top. Quantum Electron.
17
,
1250
(
2011
).
14.
N.
Rubido
,
J.
Tiana-Alsina
,
M. C.
Torrent
 et al,
Phys. Rev. E
84
,
026202
(
2011
).
15.
A.
Aragoneses
,
S.
Perrone
,
T.
Sorrentino
 et al,
Sci. Rep.
4
,
4696
(
2014
).
16.
J. P.
Toomey
and
D. M.
Kane
,
Opt. Express
22
,
1713
(
2014
).
17.
X.
Porte
,
O.
D'Huys
,
T.
Jungling
 et al,
Phys. Rev. E
90
,
052911
(
2014
).
18.
X.
Porte
,
M. C.
Soriano
, and
I.
Fischer
,
Phys. Rev. A
89
,
023822
(
2014
).
19.
C.
Masoller
,
Y.
Hong
,
S.
Ayad
 et al,
New J. Phys.
17
,
023068
(
2015
).
20.
B. L.
Lan
and
C.
Masoller
,
PLoS One
11
,
e0150027
(
2016
).
21.
C.
Quintero-Quiroz
,
J.
Tiana-Alsina
,
J.
Roma
,
M. C.
Torrent
, and
C.
Masoller
,
Sci. Rep.
6
,
37510
(
2016
).
22.
D.
Lenstra
,
B.
Verbeek
, and
A.
Den Boef
,
IEEE J. Quantum Electron.
21
,
674
(
1985
).
23.
R.
Tkach
and
A.
Chraplyvy
,
J. Lightwave Technol.
4
,
1655
(
1986
); available at http://ieeexplore.ieee.org/document/1074666/.
24.
L. N.
Langley
,
K. A.
Shore
, and
J.
Mork
,
Opt. Lett.
19
,
2137
(
1994
).
25.
T.
Heil
,
I.
Fischer
, and
W.
Elssaber
,
Phys. Rev. A
58
,
R2672
(
1998
).
26.
See https://www.youtube.com/watch?v=nltBQG_IIWQ&feature=youtu.be for an experimental video of the transition.
27.
C.
Bandt
and
B.
Pompe
,
Phys. Rev. Lett.
88
,
174102
(
2002
).
28.
A.
Karsaklian Dal Bosco
,
S.
Ohara
,
N.
Sato
 et al,
IEEE Photonics J.
9
,
6600512
(
2017
); available at http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7867036.
29.
T.
Heil
,
I.
Fischer
,
W.
Elsasser
, and
A.
Gavrielides
,
Phys. Rev. Lett.
87
,
243901
(
2001
).
30.
A.
Tabaka
,
K.
Panajotov
,
I.
Veretennicoff
, and
M.
Sciamanna
,
Phys. Rev E
70
,
036211
(
2004
).
31.
J. A.
Reinoso
,
J.
Zamora-Munt
, and
C.
Masoller
,
Phys. Rev. E
87
,
062913
(
2013
).
32.
R.
Lang
and
K.
Kobayashi
,
IEEE J. Quantum Electron.
16
,
347
(
1980
).
33.
I.
Fischer
,
G. H. M.
van Tartwijk
,
A. M.
Levine
 et al,
Phys. Rev. Lett.
76
,
220
(
1996
).
34.

The gray region represents the interval of probability values which are consistent with the uniform distribution: p ± 3σp (confidence level of 99.5%), where p = 1/6 and σp=p(1p)/N, with N being the number of inter-dropout intervals in the time-series.34 

35.
Y.
Hong
and
K. A.
Shore
,
Opt. Lett.
30
,
3332
(
2005
).
36.
T.
Sorrentino
,
C.
Quintero-Quiroz
,
M. C.
Torrent
, and
C.
Masoller
,
IEEE J. Sel. Top. Quantum Electron.
21
,
1801107
(
2015
).
37.
S.
Barland
,
P.
Spinicelli
,
G.
Giacomelli
, and
F.
Marin
,
IEEE J. Quantum Electron.
41
,
1235
(
2005
).
38.
A.
Torcini
,
S.
Barland
,
G.
Giacomelli
, and
F.
Marin
,
Phys. Rev. A
74
,
063801
(
2006
).
39.
J.
Zamora-Munt
,
C.
Masoller
, and
J.
García-Ojalvo
,
Phys. Rev. A
81
,
033820
(
2010
).
40.
F.
Baladi
,
M. W.
Lee
,
J.-R.
Burie
 et al,
Opt. Lett.
41
,
2950
(
2016
).
You do not currently have access to this content.