We investigate transient behaviors induced by magnetic fields on the dynamics of the flow of a ferrofluid in the gap between two concentric, independently rotating cylinders. Without applying any magnetic fields, we uncover emergence of flow states constituted by a combination of a localized spiral state in the top and bottom of the annulus and different multi-cell flow states with toroidally closed vortices in the interior of the bulk. However, when a magnetic field is presented, we observe the transient behaviors between multi-cell states passing through two critical thresholds in a strength of an axial (transverse) magnetic field. Before the first critical threshold of a magnetic field strength, multi-stable states with different number of cells could be observed. After the first critical threshold, we find the transient behavior between the three- and two-cell flow states. For more strength of magnetic field or after the second critical threshold, we discover that multi-cell states are disappeared and a localized spiral state remains to be stimulated. The studied transient behavior could be understood by the investigation of various quantities including a modal kinetic energy, a mode amplitude of the radial velocity, wavenumber, angular momentum, and torque. In addition, the emergence of new flow states and the transient behavior between their states in ferrofluidic flows indicate that richer and potentially controllable dynamics through magnetic fields could be possible in ferrofluic flow.

1.
G. I.
Taylor
, “
Stability of a viscous liquid contained between two rotating cylinders
,”
Philos. Trans. R. Soc. London A
223
,
289
(
1923
).
2.
P.
Chossat
and
G.
Iooss
,
The Couette–Taylor Problem
(
Springer
,
Berlin
,
1994
).
3.
C. A.
Jones
, “
The transition to wavy Taylor vortices
,”
J. Fluid Mech.
157
,
135
162
(
1985
).
4.
R. C.
DiPrima
and
H. L.
Swinney
, “
Instabilities and transition in flow between concentric rotating cylinders
,” in
Hydrodynamic Instabilities and the Transition to Turbulence
, Topics in Applied Physics Vol.
45
, edited by
H. L.
Swinney
and
J. G.
Gollub
(
Springer
,
Berlin
,
1985
).
5.
C. D.
Andereck
,
S. S.
Liu
, and
H. L.
Swinney
, “
Flow regimes in a circular Couette system with independently rotating cylinders
,”
J. Fluid Mech.
164
,
155
183
(
1986
).
6.
M.
Golubitsky
and
W. F.
Langford
, “
Pattern formation and bistability in flow between counterrotating cylinders
,”
Physica D
32
,
362
392
(
1988
).
7.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Cambridge University Press
,
Cambridge
,
1985
).
8.
J. P.
McTague
, “
Magnetoviscosity of magnetic colloids
,”
J. Chem. Phys.
51
,
133
(
1969
).
9.
M. I.
Shliomis
, “
Effective viscosity of magnetic suspensions
,”
Sov. Phys. JETP
34
,
1291
(
1972
).
10.
M.
Niklas
, “
Influence of magnetic fields on Taylor vortex formation in magnetic fluids
,”
Z. Phys. B
68
,
493
(
1987
).
11.
S.
Altmeyer
,
C.
Hoffmann
,
A.
Leschhorn
, and
M.
Lücke
, “
Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system
,”
Phys. Rev. E
82
,
016321
(
2010
).
12.
M.
Reindl
and
S.
Odenbach
, “
Effect of axial and transverse magnetic fields on the flow behavior of ferrofluids featuring different levels of interparticle interaction
,”
Phys. Fluids
23
,
093102
(
2011
).
13.
S.
Altmeyer
,
J.
Lopez
, and
Y.
Do
, “
Effect of elongational flow on ferrofuids under a magnetic field
,”
Phys. Rev. E
88
,
013003
(
2013
).
14.
O.
Ambacher
,
S.
Odenbach
, and
K.
Stierstadt
, “
Rotational viscosity in ferrofluids
,”
Z. Phys. B
86
,
29
(
1992
).
15.
S.
Odenbach
and
H.
Gilly
, “
Taylor-vortex flow of magnetic fluids under the influence of an azimuthal magnetic field
,”
J. Magn. Magn. Mater.
152
,
123
128
(
1996
).
16.
H. W.
Müller
and
M.
Liu
, “
Structure of ferrofluid dynamics
,”
Phys. Rev. E
64
,
061405
(
2001
).
17.
S.
Odenbach
,
Magnetoviscous Effects in Ferrofluids
, Lecture Notes in Physics Vol.
m71
(
Springer
,
Berlin
,
2002
).
18.
M. I.
Shliomis
, “
‘Comment on’ structure of ferrofluid dynamics
,”
Phys. Rev. E
67
,
43201
(
2003
).
19.
A.
Leschhorn
,
M.
Lücke
,
C.
Hoffmann
, and
S.
Altmeyer
, “
Stability of circular Couette flow of a ferrofluid in an axial magnetic field: Influence of polydispersity
,”
Phys. Rev. E
79
,
036308
(
2009
).
20.
M.
Reindl
and
S.
Odenbach
, “
Influence of a homogeneous axial magnetic field on Taylor-Couette flow of ferrofluids with low particle-particle interaction
,”
Exp. Fluids
50
,
375
384
(
2011
).
21.
S.
Altmeyer
, “Untersuchungen von komplexen Wirbelströmungen mit newtonschem fluid und Ferrofluiden im Taylor-Couette system,” Doktorarbeit (Universität des Saarlandes, Saarbrücken,
2011
).
22.
S.
Altmeyer
,
Y.-H.
Do
, and
Y.-C.
Lai
, “
Transition to turbulence in Taylor-Couette ferrofluidic flow
,”
Sci. Rep.
5
,
10781
(
2015
).
23.
S.
Altmeyer
,
Y.-H.
Do
, and
Y.-C.
Lai
, “
Magnetic field induced flow reversal in a ferrofluidic Taylor-Couette system
,”
Sci. Rep.
5
,
18589
(
2015
).
24.
J. E.
Hart
, “
A magnetic fluid laboratory model of the global buoyancy and wind-driven ocean circulation: Analysis
,”
Dyn. Atmos. Oceans
41
,
121
138
(
2006
).
25.
J. E.
Hart
and
S.
Kittelman
, “
A magnetic fluid laboratory model of the global buoyancy and wind-driven ocean circulation: Experiments
,”
Dyn. Atmos. Oceans
41
,
139
147
(
2006
).
26.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
(
3
),
851
(
1993
).
27.
M.
Nagata
, “
On wavy instabilities of the Taylor-vortex flow between corotating cylinders
,”
J. Fluid Mech.
188
,
585
(
1988
).
28.
R.
Hollerbach
and
G.
Rudiger
, “
New type of magnetorotational instability in cylindrical Taylor-Couette flow
,”
Phys. Rev. Lett.
95
,
124501
(
2005
).
29.
F.
Tefani
 et al, “
Experimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field
,”
Phys. Rev. Lett.
97
,
184502
(
2006
).
30.
M. S.
Paoletti
and
D. P.
Lathrop
, “
Angular momentum transport in turbulent flow between independently rotating cylinders
,”
Phys. Rev. Lett.
106
,
024501
(
2011
).
31.
D. P. M.
van Gils
,
S. G.
Huisman
,
G. W.
Bruggert
,
C.
Sun
, and
D.
Lohse
, “
Torque scaling in turbulent Taylor-Couette flow with co- and counterrotating cylinders
,”
Phys. Rev. Lett.
106
,
024502
(
2011
).
32.
M.
Burin
 et al, “
Reduction of Ekman circulation within Taylor-Couette flow
,”
Exp. Fluids
40
,
962
966
(
2006
).
33.
E.
Schartman
,
H.
Ji
, and
M. J.
Burin
, “
Reduction of Ekman circulation within Taylor-Couette flow
,”
Rev. Sci. Instrum.
80
,
024501
(
2009
).
34.
T.
Benjamin
, “
Bifurcation phenomena in steady flows of a viscous fluid. I. theory
,”
Philos. Trans. R. Soc. A
359
,
1
26
(
1978
).
35.
T.
Benjamin
, “
Bifurcation phenomena in steady flows of a viscous fluid. II. experiments
,”
Philos. Trans. R. Soc. A
359
,
27
43
(
1978
).
36.
M.
Heise
 et al, “
Co-rotating Taylor-Couette flow enclosed by stationary disks
,”
J. Fluid Mech.
716
,
R4
(
2013
).
37.
S.
Altmeyer
 et al, “
End wall effects on the transitions between Taylor vortices and spiral vortices
,”
Phys. Rev. E
81
,
066313
(
2010
).
38.
M.
Heise
 et al, “
Localized spirals in Taylor-Couette flow
,”
Phys. Rev. E
77
,
026202
(
2008
).
39.
J.
Abshagen
,
M.
Heise
,
G.
Pfister
, and
T.
Mullin
, “
Multiple localized states in centrifugally stable rotating flow
,”
Phys. Fluids
22
,
021702
(
2010
).
40.
C.
Hoffmann
,
S.
Altmeyer
,
M.
Heise
,
J.
Abshagen
, and
G.
Pfister
, “
Axisymmetric propagating vortices in centrifugally stable Taylor-Couette flow
,”
J. Fluid Mech.
728
,
458
470
(
2013
).
41.
S.
Altmeyer
,
J.
Lopez
, and
Y.
Do
, “
Influence of an inhomogeneous internal magnetic field on the flow dynamics of ferrofluid between differentially rotating cylinders
,”
Phys. Rev. E
85
,
066314
(
2012
).
42.
P.
Langevin
, “
Magnétisme et théorie des électrons
,”
Ann. Chem. Phys.
5
,
70
127
(
1905
).
43.
J.
Embs
,
H. W.
Müller
,
C.
Wagner
,
K.
Knorr
, and
M.
Lücke
, “
Measuring the rotational viscosity of ferrofluids without shear flow
,”
Phys. Rev. E
61
,
R2196
R2199
(
2000
).
44.
M.
Niklas
,
H.
Müller-Krumbhaar
, and
M.
Lücke
, “
Taylor–vortex flow of ferrofluids in the presence of general magnetic fields
,”
J. Magn. Magn. Mater.
81
,
29
(
1989
).
45.
S.
Odenbach
and
H. W.
Müller
, “
Stationary off-equilibrium magnetization in ferrofluids under rotational and elongational flow
,”
Phys. Rev. Lett.
89
,
037202
(
2002
).
46.
B.
Eckhardt
,
S.
Grossmann
, and
D.
Lohse
, “
Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders
,”
J. Fluid Mech.
581
,
221
250
(
2007
).

Supplementary Material

You do not currently have access to this content.