Electrical turbulence in cardiac tissue is associated with arrhythmias such as life-threatening ventricular fibrillation. Recent experimental studies have shown that a sequence of low-energy electrical far-field pulses is able to terminate fibrillation more gently than a single high-energy pulse which causes severe side effects. During this low-energy antifibrillation pacing (LEAP), only tissue near sufficiently large conduction heterogeneities, such as large coronary arteries, is activated. In order to optimize LEAP, we performed extensive simulations of cardiac tissue perforated by blood vessels, employing two alternative cellular models that exhibit electrical turbulence at a similar length scale. Moreover, the scale of blood vessels in our two-dimensional simulations was chosen such that the threshold for single pulse defibrillation matches experimental values. For each of the 100 initial conditions, we tested different electrical field strengths, pulse shapes, numbers of pulses, and periods between the pulses. LEAP is successful for both models, albeit with substantial differences. One model exhibits a spectrum of chaotic activity featuring a narrow peak around a dominant frequency. In this case, the optimal period between low-energy pulses matches this frequency and LEAP greatly reduces the required energy for successful defibrillation. For pulses with larger energies, the system is perturbed such that underdrive pacing becomes advantageous. The spectrum of the second model features a broader peak, resulting in a less pronounced optimal pacing period and a decreased energy reduction. In both cases, pacing with five or six pulses which are separated by the dominant period maximizes the energy reduction.

1.
E. M.
Cherry
,
F. H.
Fenton
, and
R. F.
Gilmour
, “
Mechanisms of ventricular arrhythmias: A dynamical systems-based perspective
,”
Am. J. Physiol.
302
,
H2451
H2463
(
2012
).
2.
S. V.
Pandit
and
J.
Jalife
, “
Rotors and the dynamics of cardiac fibrillation
,”
Circ. Res.
112
,
849
862
(
2013
).
3.
A.
Karma
, “
Physics of cardiac arrhythmogenesis
,”
Annu. Rev. Condens. Matter Phys.
4
,
313
337
(
2013
).
4.
Z.
Qu
,
G.
Hu
,
A.
Garfinkel
, and
J. N.
Weiss
, “
Nonlinear and stochastic dynamics in the heart
,”
Phys. Rep.
543
,
61
162
(
2014
).
5.
S.
Alonso
,
M.
Bär
, and
B.
Echebarria
, “
Nonlinear physics of electrical wave propagation in the heart: A review
,”
Rep. Prog. Phys.
79
,
096601
(
2016
).
6.
R. A.
Gray
,
A. M.
Pertsov
, and
J.
Jalife
, “
Spatial and temporal organization during cardiac fibrillation
,”
Nature
392
,
75
78
(
1998
).
7.
F. X.
Witkowski
,
L. J.
Leon
,
P. A.
Penkoske
,
W. R.
Giles
,
M. L.
Spano
,
W. L.
Ditto
, and
A. T.
Winfree
, “
Spatiotemporal evolution of ventricular fibrillation
,”
Nature
392
,
78
82
(
1998
).
8.
M. P.
Nash
,
A.
Mourad
,
R. H.
Clayton
,
P. M.
Sutton
,
C. P.
Bradley
,
M.
Hayward
,
D. J.
Paterson
, and
P.
Taggart
, “
Evidence for multiple mechanisms in human ventricular fibrillation
,”
Circulation
114
,
536
542
(
2006
).
9.
K. H.
Ten Tusscher
and
A. V.
Panfilov
, “
Organization of ventricular fibrillation in the human heart
,”
Circ. Res.
100
,
e87
e101
(
2007
).
10.
W. H.
Maisel
, “
Pacemaker and icd generator reliability: Meta-analysis of device registries
,”
JAMA
295
,
1929
1934
(
2006
).
11.
G. P.
Walcott
,
C. R.
Killingsworth
, and
R. E.
Ideker
, “
Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction?
,”
Resuscitation
59
,
59
70
(
2003
).
12.
F. H.
Fenton
,
S.
Luther
,
E. M.
Cherry
,
N. F.
Otani
,
V.
Krinsky
,
A.
Pumir
,
E.
Bodenschatz
, and
R. F.
Gilmour
, “
Termination of atrial fibrillation using pulsed low-energy far-field stimulation
,”
Circulation
120
,
467
476
(
2009
).
13.
S.
Luther
,
F. H.
Fenton
,
B. G.
Kornreich
,
A.
Squires
,
P.
Bittihn
,
D.
Hornung
,
M.
Zabel
,
J.
Flanders
,
A.
Gladuli
,
L.
Campoy
,
E. M.
Cherry
,
G.
Luther
,
G.
Hasenfuss
,
V. I.
Krinsky
,
A.
Pumir
,
R. F.
Gilmour
, Jr.
, and
E.
Bodenschatz
, “
Low-energy control of electrical turbulence in the heart
,”
Nature
475
,
235
239
(
2011
).
14.
C. M.
Ambrosi
,
C. M.
Ripplinger
,
I. R.
Efimov
, and
V. V.
Fedorov
, “
Termination of sustained atrial flutter and fibrillation using low-voltage multiple-shock therapy
,”
Heart Rhythm
8
,
101
108
(
2011
).
15.
W.
Li
,
A. H.
Janardhan
,
V. V.
Fedorov
,
Q.
Sha
,
R. B.
Schuessler
, and
I. R.
Efimov
, “
Low-energy multistage atrial defibrillation therapy terminates atrial fibrillation with less energy than a single shock clinical perspective
,”
Circ.: Arrhythmia Electrophysiol.
4
,
917
925
(
2011
).
16.
W.
Li
,
C. M.
Ripplinger
,
Q.
Lou
, and
I. R.
Efimov
, “
Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction
,”
Heart Rhythm
6
,
1020
1027
(
2009
).
17.
A. H.
Janardhan
,
W.
Li
,
V. V.
Fedorov
,
M.
Yeung
,
M. J.
Wallendorf
,
R. B.
Schuessler
, and
I. R.
Efimov
, “
A novel low-energy electrotherapy that terminates ventricular tachycardia with lower energy than a biphasic shock when antitachycardia pacing fails
,”
J. Am. Coll. Cardiol.
60
,
2393
2398
(
2012
).
18.
S.
Weidmann
, “
Effect of current flow on the membrane potential of cardiac muscle
,”
J. Physiol.
115
,
227
236
(
1951
).
19.
J. P.
Wikswo
, Jr.
,
S.-F.
Lin
, and
R. A.
Abbas
, “
Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation
,”
Biophys. J.
69
,
2195
(
1995
).
20.
A.
Pumir
and
V.
Krinsky
, “
Unpinning of a rotating wave in cardiac muscle by an electric field
,”
J. Theor. Biol.
199
,
311
319
(
1999
).
21.
A.
Pumir
,
V.
Nikolski
,
M.
Hörning
,
A.
Isomura
,
K.
Agladze
,
K.
Yoshikawa
,
R.
Gilmour
,
E.
Bodenschatz
, and
V.
Krinsky
, “
Wave emission from heterogeneities opens a way to controlling chaos in the heart
,”
Phys. Rev. Lett.
99
,
208101
(
2007
).
22.
P.
Bittihn
,
M.
Hörning
, and
S.
Luther
, “
Negative curvature boundaries as wave emitting sites for the control of biological excitable media
,”
Phys. Rev. Lett.
109
,
118106
(
2012
).
23.
B. J.
Caldwell
,
M. L.
Trew
, and
A. M.
Pertsov
, “
Cardiac response to low energy field pacing challenges the standard theory of defibrillation
,”
Circ.: Arrhythmia Electrophysiol.
8
,
685
(
2015
).
24.
S.
Takagi
,
A.
Pumir
,
D.
Pazo
,
I.
Efimov
,
V.
Nikolski
, and
V.
Krinsky
, “
Unpinning and removal of a rotating wave in cardiac muscle
,”
Phys. Rev. Lett.
93
,
058101
(
2004
).
25.
C. M.
Ripplinger
,
V. I.
Krinsky
,
V. P.
Nikolski
, and
I. R.
Efimov
, “
Mechanisms of unpinning and termination of ventricular tachycardia
,”
Am. J. Physiol.: Heart Circ. Physiol.
291
,
H184
H192
(
2006
).
26.
A.
Pumir
,
S.
Sinha
,
S.
Sridhar
,
M.
Argentina
,
M.
Hörning
,
S.
Filippi
,
C.
Cherubini
,
S.
Luther
, and
V.
Krinsky
, “
Wave-train-induced termination of weakly anchored vortices in excitable media
,”
Phys. Rev. E
81
,
010901
(
2010
).
27.
T.
Shajahan
,
S.
Berg
,
S.
Luther
,
V.
Krinski
, and
P.
Bittihn
, “
Scanning and resetting the phase of a pinned spiral wave using periodic far field pulses
,”
New J. Phys.
18
,
043012
(
2016
).
28.
D.
Hornung
,
V.
Biktashev
,
N.
Otani
,
T.
Shajahan
,
T.
Baig
,
S.
Berg
,
S.
Han
,
V.
Krinsky
, and
S.
Luther
, “
Mechanisms of vortices termination in the cardiac muscle
,”
Royal Soc. Open Sci.
4
,
170024
(
2017
).
29.
L. J.
Rantner
,
B. M.
Tice
, and
N. A.
Trayanova
, “
Terminating ventricular tachyarrhythmias using far-field low-voltage stimuli: Mechanisms and delivery protocols
,”
Heart Rhythm
10
,
1209
1217
(
2013
).
30.
L.
Luo
and
Y.
Rudy
, “
A model of the ventricular cardiac action potential: Depolarization, repolarization and their interaction
,”
Circ. Res.
68
,
1501
1526
(
1991
).
31.
F.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
,
20
47
(
1998
).
32.
K.
Ten Tusscher
and
A.
Panfilov
, “
Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions
,”
Phys. Med. Biol.
51
,
6141
(
2006
).
33.
J. P.
Keener
and
J.
Sneyd
,
Mathematical Physiology
(
Springer
,
2009
), Vol.
1
.
34.
X.
Zhou
,
W. M.
Smith
,
D. L.
Rollins
, and
R. E.
Ideker
, “
Transmembrane potential changes caused by shocks in guinea pig papillary muscle
,”
Am. J. Physiol.: Heart Circ. Physiol.
271
,
H2536
H2546
(
1996
).
35.
M. M.
Elshrif
and
E. M.
Cherry
, “
A quantitative comparison of the behavior of human ventricular cardiac electrophysiology models in tissue
,”
PLoS One
9
,
e84401
(
2014
).
36.
N. F.
Otani
,
A.
Mo
,
S.
Mannava
,
F. H.
Fenton
,
E. M.
Cherry
,
S.
Luther
, and
R. F.
Gilmour
, Jr.
, “
Characterization of multiple spiral wave dynamics as a stochastic predator-prey system
,”
Phys. Rev. E
78
,
021913
(
2008
).
37.
S.
Weidmann
, “
Electrical constants of trabecular muscle from mammalian heart
,”
J. Physiol.
210
,
1041
1054
(
1970
).
38.
A.
Bueno-Orovio
,
E. M.
Cherry
, and
F. H.
Fenton
, “
Minimal model for human ventricular action potentials in tissue
,”
J. Theor. Biol.
253
,
544
560
(
2008
).
39.
F. X.
Witkowski
,
P. A.
Penkoske
, and
R.
Plonsey
, “
Mechanism of cardiac defibrillation in open-chest dogs with unipolar dc-coupled simultaneous activation and shock potential recordings
,”
Circulation
82
,
244
260
(
1990
).
40.
I. R.
Efimov
,
M. W.
Kroll
, and
P.
Tchou
,
Cardiac Bioelectric Therapy: Mechanisms and Practical Implications
(
Springer Science & Business Media
,
2008
).
41.
U.
Achleitner
,
K.
Rheinberger
,
B.
Furtner
,
A.
Amann
, and
M.
Baubin
, “
Waveform analysis of biphasic external defibrillators
,”
Resuscitation
50
,
61
70
(
2001
).
42.
J.
Bragard
,
A.
Simic
,
J.
Elorza
,
R. O.
Grigoriev
,
E. M.
Cherry
,
R. F.
Gilmour
, Jr.
,
N. F.
Otani
, and
F. H.
Fenton
, “
Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols
,”
Chaos
23
,
043119
(
2013
).
43.
W.
Hackbusch
,
Elliptic Differential Equations: Theory and Numerical Treatment, Springer Series in Computational Mathematics
(
Springer
,
2003
).
44.
S.
Rush
and
H.
Larsen
, “
A practical algorithm for solving dynamic membrane equations
,”
IEEE Trans. Biomed. Eng.
25
,
389
392
(
1978
).
45.
E.
Isaacson
and
H.
Keller
,
Analysis of Numerical Methods
, Dover Books on Mathematics Series (
Dover Publications
,
1994
).
46.
A.
Winfree
, “
Evolving perspectives during 12 years of electrical turbulence
,”
Chaos
8
,
1
19
(
1998
).
47.
A.
Wacker
,
S.
Bose
, and
E.
Schöll
, “
Transient spatio-temporal chaos in a reaction-diffusion model
,”
Europhys. Lett.
31
,
257
(
1995
).
48.
M. C.
Strain
and
H. S.
Greenside
, “
Size-dependent transition to high-dimensional chaotic dynamics in a two-dimensional excitable medium
,”
Phys. Rev. Lett.
80
,
2306
(
1998
).
49.
R.
Wackerbauer
and
K.
Showalter
, “
Collapse of spatiotemporal chaos
,”
Phys. Rev. Lett.
91
,
174103
(
2003
).

Supplementary Material

You do not currently have access to this content.